
Performance Testing in Open-Source Web Projects:
Adoption, Maintenance, and a Change Taxonomy

Sergio Di Meglio §, Luigi Libero Lucio Starace §, Valeria Pontillo ¶, Ruben Opdebeeck ¶,
Coen De Roover ¶, Sergio Di Martino §

§ Department of Electrical Engineering and Information Technology, University of Naples Federico II, Italy
Email: (sergio.dimeglio, luigiliberolucio.starace, sergio.dimartino)@unina.it
¶ Software Languages (SOFT) Lab, Vrije Universiteit Brussel, Belgium

Email: (valeria.pontillo, ruben.denzel.opdebeeck, coen.de.roover)@vub.be

Abstract—Performance testing is crucial to ensuring that web
applications meet user expectations under varying workloads.
Activities such as stress, load, and smoke testing are designed
to simulate different kinds of simultaneous user interactions
and assess system behavior. Despite its recognized importance in
quality assurance of large-scale web-based systems, witnessed by
numerous studies proposing solutions to support these activities,
the real-world adoption and evolutionary dynamics of perfor-
mance tests have received limited attention in the literature. To fill
this gap, we analyzed 77 open-source web projects using APACHE
JMETER and LOCUST. Our study investigates how performance
tasks are performed (adoption time, load design, types of tasks),
the characteristics of projects that adopt them, and their long-
term maintenance. Our findings reveal that performance tests
in open-source projects are simple, with a focus on single-
user behaviors and minimal requests, and most tests have low
concurrency. Load tests are the most common, followed by smoke
and stress tests. Projects with performance tests tend to be
larger and more actively maintained. However, tests are mostly
long-lived but rarely updated, suggesting potential risks to their
relevance and coverage over time. Finally, by creating a taxonomy
of performance test changes, we observe recurring patterns of
modifications, including workload adjustments, network request
changes, and updates to system monitoring.

Index Terms—Performance Testing, Test Maintenance, Web
applications, Empirical Study.

I. INTRODUCTION

As web applications become increasingly integral to daily
activities such as banking and shopping, their ability to handle
high workloads is critical. Performance issues such as slow
response times, memory leaks, and lock contention, can sig-
nificantly degrade the user experience, leading to customer
dissatisfaction and financial or reputational losses for compa-
nies [1], [2]. In this context, performance testing can play a key
role in evaluating how well web applications perform under
varying workloads. In general, performance tests generate
representative workloads by simulating a number of concurrent
users. For web applications, this typically means sending
network requests to a web server [3].

Performance testing includes various activities, such as load
testing, stress testing, and smoke testing. Each activity is
designed to identify specific load-related issues by running
the system under different workload conditions. Despite the
differences, all activities follow the same three-step process:
test design, execution, and analysis. The first phase is used

to design the simulated workload. In the test execution phase,
tools such as APACHE JMETER and LOCUST generate the
workload by replicating user interactions and collecting system
metrics such as response time or CPU usage. In the last
phase, the collected data is examined to identify any potential
problems and ensure that performance goals are satisfied.

Despite the importance of performance testing in quality
assurance of large-scale web-based systems, as witnessed by
experience reports [4]–[6], the actual adoption of performance
tests and their evolution over time have received limited
attention in the literature. To the best of our knowledge, Leitner
and Bezemer [6] are the only ones to have studied the adoption
of performance tests in open-source JAVA projects. The long-
term maintenance of these tests has not yet been studied.

To address this void, we present an empirical study of the
adoption and maintenance practices that govern performance
testing in open-source web applications. Starting from a recent
dataset [7] comprising 226 performance tests from 77 open
source web repositories, we investigate how performance
testing is conducted in practice, such as the manner in which
workloads are defined. Furthermore, we explore the character-
istics of repositories that adopt performance testing, shedding
light on the types of projects most likely to implement these
practices. Finally, we analyze the maintenance of performance
tests by studying the frequency at which they are changed and
all the changes made to the tests in our dataset. This analysis
enables us to create a taxonomy of common test changes.

Our results show that performance testing in open-source
projects is often delayed, with adoption increasing significantly
only after 2018. While some projects integrate performance
tests early, the majority introduce them later, which suggests
that performance concerns only come later. Regarding work-
load design, the tests tend to have a very short duration
and simulate a low number of concurrent users, rather than
generating a realistic workload. Additionally, we observe
misclassifications of test types, indicating inconsistencies in
test organization and a lack of standardized practices. We also
find that performance tests are generally long-lived but rarely
updated, with many tests persisting for years without modifi-
cations, raising concerns about their long-term relevance.

Finally, through the systematic analysis of test evolution, we
identify ten main categories of performance test modifications,

with workload shape adjustments, network request updates,
and assertion refinements being the most frequent.

In summary, this paper makes the following contributions:
1) An empirical analysis of performance testing adoption

in 77 open-source web applications, focusing on how
performance testing is conducted, the characteristics of
projects that integrate these tests, and the maintenance of
the performance tests;

2) A taxonomy of common performance test changes com-
ing from the analysis of 787 individual changes, consist-
ing of ten categories and 18 sub-categories;

3) An online appendix [8] providing all data used to conduct
our study, enabling replication and extension of our
research by the community.

II. BACKGROUND AND RELATED WORK

Performance testing ensures that the system under test
(SUT) behaves as expected under different workloads. For
web applications, a workload is equivalent to multiple con-
current users making requests to a web server [3], [9].
By simulating these workloads, testers can analyze system
performance and identify potential problems, such as slow
response times, resource bottlenecks, or failures under high-
stress conditions [10].

Figure 1: Overview of the different types of performance tests
according to the usual form of workload defined in terms of
duration and number of concurrent users.

Performance testing is commonly understood as synony-
mous with load, smoke, and stress tests [11]. Each type of
performance test assesses a system’s performance under a
different type of workload, as illustrated by Figure 1:
Load tests aim to verify the behavior of the SUT under real-

istic load conditions. To this end, they simulate interactions
between a controlled number of concurrent users that reflect
typical usage patterns [5], [12].

Stress tests aim to push a system to its limits to assess its
robustness and determine the maximum load it can handle
[13]. Extreme conditions may include excessive load levels
[14] or resource limitations, such as high CPU usage or
infrastructure failures [15]. Stress tests are also used to

assess the robustness of software architectures, ensuring that
the system remains responsive under extreme conditions
[11], [16].

Smoke tests are load tests with a minimal load, used to verify
that a system is up and running and to establish performance
baselines. Their workload involves but a few concurrent
users for a short period of time, typically not exceeding
30 seconds [6], [17].

A. Brief Introduction to Performance Testing Phases

While the aforementioned types of performance tests serve
different purposes, their design, execution, and analysis is
similar [5], [18]:

Test Design: According to the literature, there are two
approaches to creating a workload. The first focuses solely
on making requests according to a specific target rate. For
instance, simulating a certain number of immediate purchase
requests in a given time interval [5], [19]. The second ap-
proach simulates user interactions more realistically through
a sequence of requests that reflects typical user behavior. For
example, first logging in, then some browsing, followed by
the eventual purchasing —including periods of inactivity in
between [5], [18].

Test Execution: A workload’s execution can be automated
through a load generation tool [5]. The most popular open-
source tools are JMETER and LOCUST [20]. JMETER en-
ables manual workload configuration through a graphical user
interface [21]. Its core abstraction is the so-called Thread
Group which represents one or more concurrent users that
perform the same actions. Thread Group properties include
the number of concurrent users and how often or for what
duration each user repeats their actions [22]. Alternatively,
LOCUST enables algorithmic workload configuration through
Python scripts [23]. Its core abstraction is the TaskSet which
simulates user activity as a set of tasks (requests). Additional
TaskSet properties include the number of concurrent users and
its duration, which can also be specified via the command line
when the test is run [24].

Test Analysis: Once a test has been executed, system
metrics such as CPU usage, memory usage, or throughput, are
analyzed to assess whether the system satisfies its performance
objectives. As manual analysis is infeasible for large volumes
of data, heuristics are commonly used to automatically detect
threshold violations, recognize behavioral anti-patterns, or flag
anomalies by comparing observed behavior against expected
norms [4], [5], [25].

B. Related Work

Weyuker et al. [26] presented a hands-on perspective on load
testing, outlining its objectives and the role of requirements
therein, and demonstrating how to conduct load tests through
concrete examples. Hassan et al. [4] analyzed the challenges
of applying performance testing in industrial environments,
emphasizing the complexity of designing realistic workloads.
They highlighted how changes in user behavior and func-
tionality often render test workloads outdated, complicating

long-term test reliability. They also discussed the difficulties
of determining pass/fail criteria for load tests, especially
within modern DevOps practices where frequent executions
are required. Avritzer et al. [27] proposed best practices
for defining system-independent workloads for performance
evaluation. More recently, Trani et al. [28] investigated testing
activities in an agile setting, in collaboration with an industry
partner. Their findings reveal that agile performance testing
is still immature, with practitioners resorting to outdated and
inadequate practices.

Despite the valuable insights brought by the aforementioned
studies, little is known about the adoption and long-term
maintenance of performance tests in open-source projects.
While these aspects have been studied extensively for unit
tests [29]–[32], and to some extent for GUI tests of web
applications [33], the work by Leitner and Bezemer [6] is the
sole that has explored the adoption of performance tests —but
not their maintenance. The authors analyzed the adoption and
practices of performance testing in JAVA-based open-source
projects from GITHUB, focusing on non-web contexts. Their
findings reveal that performance tests are scarce and typically
written by core developers as isolated, one-off activities.

Our work aims to fill this void by leveraging a recent corpus
of web applications with performance tests1 to analyze the
extent of their adoption, by what type of projects, in what
manner —as well as the types of changes they undergo during
maintenance activities.

III. GOAL AND RESEARCH QUESTIONS

The goal of this study is to investigate the adoption and
maintenance of performance tests in open-source web ap-
plications. The purpose is to understand how performance
testing is conducted in practice, which web applications decide
to adopt this testing practice, and how performance tests
are maintained over time. The perspective is that of both
researchers and practitioners. The former are interested in
understanding the current practice of and open problems in
the maintenance of performance tests, whereas the latter are
interested in actionable insights to improve their test and
maintenance strategies.

Our study focuses on four research questions. First, we aim
to investigate how performance testing is conducted in open-
source web applications by examining three aspects: adoption,
the types of performance tests used [5], and the design of their
workloads. The latter helps understand challenges in workload
modeling. So, we ask:

RQ1. How is performance testing conducted in open-source
web applications?

We continue our analysis by investigating whether the nature
and characteristics of the project influence the adoption of
performance testing practices. Specifically, we aim to verify
possible correlations between the adoption of performance

1Reference omitted for double-anonymous reasons.

tests and metrics such as number of lines of code and the
number of contributors. So we ask:

RQ2. What are the main characteristics of projects adopting
performance testing?

Then, we investigate the maintenance of performance tests
by analyzing how they change over time. To do so, we
examine whether performance tests are actively maintained or
eventually abandoned, providing insights into the long-term
sustainability of performance testing practices. So, we ask:

RQ3. How frequently are performance tests changed?

Finally, we focus on the specific modifications performance
tests undergo throughout their lifetime. By identifying recur-
ring patterns in test modifications, we aim to offer practical
insights that help practitioners anticipate maintenance chal-
lenges and improve test longevity. So, we ask:

RQ4. How are performance tests modified?

Context of the Study: The context of our study is a dataset
of 5,563 non-trivial web applications featuring end-to-end tests
[7]. Since our study focuses exclusively on performance testing
in web applications, we explicitly select only those with tests
designed to generate workloads that simulate users sending
network requests (e.g., HTTP, WSS, etc.) to a backend. We
identified 66 repositories containing 201 APACHE JMETER
tests and 12 repositories with 25 LOCUST tests, as shown in
Table I. Notably, one of the repositories adopts both tools,
providing an interesting case for further investigation.

Table I: Overview of repositories and tests collected from the
dataset, classified according to frameworks and tools used for
performance testing.

Performance Testing
Load Generator Tool Num. of Repos Num. of Tests
APACHE JMETER 66 201

LOCUST 12 25

IV. RQ1: HOW IS PERFORMANCE TESTING CONDUCTED IN
OPEN-SOURCE WEB APPLICATIONS?

A. Research Method

To answer RQ1, we analyze the 226 performance tests
present in the web applications to assess the adoption of
performance testing, the characteristics of the performance
tests, and the performance testing activities conducted. In
particular, our research method consists of three steps:

Adoption of performance testing over time. In this step,
we identify when performance testing activities have been
integrated into the software development lifecycle. To do so,
we compare the date of the first commit in which the web
application was created with the date of the commit that first
introduced a performance test.

Characteristics of performance tests. To provide a detailed
characterization of the performance tests, the first two au-
thors of the paper (a PhD student and a postdoc researcher
with three years of experience in the field), qualitatively
analyze the tests. To this end, they manually inspect the
latest version of the tests in the APACHE JMETER GUI
and a Python IDE for the 201 APACHE JMETER and 25
LOCUST tests, respectively. The investigation focuses on the
following aspects:
• Workload Design: We analyze the number of enabled

user behaviors that represent the workload. Specifically,
for APACHE JMETER, we count the number of Thread
Group or similar plugins, while for LOCUST we count
the number of TaskSet or similar classes (cf. Sec-
tion II). Then, for each user behavior, we count the
number of network requests, providing insights into the
workloads typically adopted in open-source projects.

• Maximum number of concurrent users and duration:
Whenever possible, we analyze the peak of concurrent
users and the duration of each test. For APACHE JMETER,
we extract this information from the test code unless
the values are provided externally (e.g., via command
line or external files), so with no default values. In
cases where dynamic variables are used (e.g., $__-
P(threads,10)), we consider the default value. We
also distinguish between the duration specified as iter-
ations of a loop and the duration in seconds. We do
not consider performance tests when it is not possible
to understand and evaluate the precise duration, e.g., both
iteration count and duration are set within the Thread
Group. For LOCUST, we do not collect these values
because the configuration is provided via command line.

• System behavior metrics: During performance testing, it is
important to analyze and understand the system’s health
and its reaction to the test. For this reason, we extract
information from key system behavior metrics collected
by different plugins, which fall into three categories: (i)
request status metrics, such as the number of successful
or failed requests and error rates; (ii) time-related metrics,
including throughput, average response time, and latency;
and (iii) resource usage metrics, which capture system re-
source consumption, such as CPU and memory usage. It is
important to emphasize that some repositories might rely
on external frameworks for monitoring system behavior,
which our analysis could not capture.

Classification of performance testing activities. To gain
more insights into the different kinds of performance testing
activities adopted, we classify tests into three categories:
smoke, load, and stress, using the criteria below as general
guidelines.
• In line with the typical interpretation [6], [17], [34], [35],

we classify smoke tests as performance tests with no more
than 2 concurrent users and a duration of at most 10 loop
iterations or 30 seconds.

• Stress tests are classified if they meet at least one of
the following criteria: (1) the test name or directory
path includes the term “stress”, (2) the test runs for
exceptionally long or infinite durations, or (3) the test
executes until predefined shutdown constraints are met.

• Load tests are identified if they meet at least one of the
following criteria: (1) the test name or directory path
includes the term “load”, or (2) the workload conditions
do not match those of smoke or stress tests.

The first two authors of the paper independently label
the tests based on these guidelines. In problematic cases of
labeling, the authors open a discussion revolving around the
guidelines described above to find an agreement. In case
of disagreement, the third author (a postdoc researcher with
three years of experience in the field), is involved, and the
decision is made based on majority voting. The classification
provides insight into the types of performance testing activities
commonly adopted in open-source web applications. It also
sheds light on how performance testing is interpreted in
practice, possibly revealing cases in which the nomenclature
is not adequately used.

B. Analysis of the Results

Figure 2 shows the adoption of performance testing over
time. Although LOCUST and APACHE JMETER were released
in 2004 and 2011 respectively, the most significant growth
in adoption occurred between 2018 and 2022. Notably, many
repositories integrated performance testing years after their
creation. For instance, repositories created in 2016 adopted
performance testing at various points between 2017 and 2023
rather than immediately.

1

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

2

1

1

2

1

1

4

2

1

1

1

1

1

1

2

1

1

3

3

1

2

1

1

1

2

1

1

1

2

3

2

5

1

1

2

1

1

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year of repository creation

Ye
ar

 o
f P

er
fo

rm
an

ce
 te

st
in

g
ad

op
tio

n

Figure 2: Repository creation and performance testing adop-
tion over time. Each square shows the number of repositories
that were created in the X-axis year and that adopted perfor-
mance testing in the Y-axis year.

This trend suggests that performance testing is often intro-
duced later in the development lifecycle, rather than being a
priority from the start. To better understand this, we categorize
adoption timing into three patterns:

• Immediate adoption: 23.38% of repositories integrated
performance testing in the same year they were created.

• Short-term adoption: 42.86% adopted it within three
years of creation.

• Long-term adoption: 33.77% incorporated it more than
three years after creation.

These findings indicate that while some projects prioritize
performance testing early on, a significant number introduces
it only as their systems mature. This may suggest that perfor-
mance concerns become more pressing as applications scale
and experience real-world usage.

Figure 3 shows the distribution of three key performance
test characteristics, namely the number of concurrent users,
the number of network requests made, and the number of
user behaviors defined. The violin plots illustrate the density
and spread of values observed across the performance tests
analyzed in our study, providing insights into common trends.
The analysis highlights that the number of user behaviors
per performance test exhibits a highly skewed distribution,
with most tests (190) focusing on a single user behavior.
This suggests that testers typically evaluate isolated scenarios
rather than modeling multi-user interactions. Only 28 tests
incorporate two behaviors, and only eight simulate more
complex workloads. This suggests that performance tests in
open-source projects are often simplified, rarely reflecting real-
world multi-user workflows.

Number of Concurrent Users Number of Network Requests Number of User Behaviors

2.5

5.0

7.5

10.0

0

50

100

150

0

250

500

750

1000

Figure 3: Characterization of performance test workloads.
Note that the Y-axis has been transformed using sqrt to
improve the visualization of data distribution.

Beyond modeling user behaviors, most tests also constrain
the number of network requests per behavior. The majority
(147 tests) include only a single request, while 33, 27, and
30 tests execute two, three, and four requests, respectively.
Only 41 tests model more complex interactions of over 10
requests, with rare outliers exceeding 50 requests. A qualitative
analysis reveals a common practice of validating multiple
API endpoints within a single test using various inputs and
parameters, rather than splitting them into structured test cases.
As discussed in Section II, the low adoption of multiple
user behaviors and sequential requests suggests that testers
design performance tests to target isolated endpoints rather
than simulate real-world workloads. This is further reinforced
when examining concurrent users and test duration. The most
frequent scenario (71 tests) involves a single user, indicating

a focus on handling individual requests rather than system
scalability; 55 tests scale between 2 and 10 users, but higher
concurrency levels are rare, only 33 tests involve 11 to 100
users, and just 7 simulate over 1,000 users.

Looking at the test duration (Figure 4), a large percentage
(84 tests) runs between 1 and 10 iterations, with 80 executing
only once, while 45 define loops of between 10 and 1,000 it-
erations. Only 23 tests run indefinitely, while explicit duration
definitions are rare. In particular, 10 tests specify duration in
seconds between 20 and 425 seconds.

These findings highlight a key distinction between perfor-
mance testing in open-source projects and industry settings
[4], [5], [18]. In the past, one of the main challenges in
performance testing was the time-consuming nature of the
process and the massive amount of data generated, which
required extensive analysis. However, this issue appears less
relevant in open-source web applications, where the short
execution times suggest that testers focus more on immediate
response validation than on long-term system performance or
stability. This aligns with the observation that most tests are
designed to verify response status and response time, rather
than assess broader system behavior under sustained load. As
shown in Figure 5, the plugins and tools used in these tests
primarily measure response times and request outcomes, rather
than tracking key performance metrics such as CPU usage,
memory consumption, or resource contention over time.

84

6 4
8

16

4 7

23

1 1 1 1 3 3

Num. of loop iterations Test duration (seconds)

[1
, 1

0)

[1
0,

 2
0)

[2
0,

 5
0)

[5
0,

 1
00

)

[1
00

, 5
00

)

[5
00

, 1
00

0)

[1
00

0,
 1

00
00

)

In
fin

ite 20 60 10
0

12
0

30
0

42
5

0

20

40

60

80

N
um

be
r

of
 te

st
s

Figure 4: Characterization of performance test duration.

Concerning the different types of performance tests, load
tests (focused on expected load handling) are with 110 in-
stances the most common, followed by smoke tests (designed
for basic validation) with 67 instances. Stress testing is less
frequent, with only 26 instances, while we were not able to
classify 22 LOCUST tests due to the absence of configuration
details. More importantly, we identified some classification
mistakes made by the test engineers themselves: of 9 tests
named as a load test, 7 were actually smoke tests and 2 were
actually stress tests. This suggests a lack of knowledge and
standardized nomenclature regarding performance testing.

159

124

8 8 8
1 1

37

0

50

100

150

Res
po

ns
e

Sta
tu

s
Tim

e

M
em

or
y U

sa
ge

TCP U
sa

ge

CPU U
sa

ge

Disk
 IO

 U
sa

ge

Net
wor

k I
O U

sa
ge

No
M

et
ric

s

N
um

be
r

of
 te

st
s

Figure 5: Characterization of the metrics considered in perfor-
mance tests.

 RQ1. Open-source web projects are slow adopters of
performance testing, with growth appearing after 2018. Tests
are simple, focusing on single-user behaviors (190 tests) and
minimal requests (147 tests). Concurrency is low, and most
tests (80) run a single iteration. Unlike industry, open-source
projects prioritize response validation over system stability.
Load tests are the most common, followed by smoke tests.
Finally, the misclassifications suggest a lack of standardized
performance testing practices.

V. RQ2: WHAT ARE THE MAIN CHARACTERISTICS OF
PROJECTS ADOPTING PERFORMANCE TESTING?

A. Research Method

To answer RQ2, we analyze whether projects that adopted
performance testing exhibit distinct software repository char-
acteristics. Understanding whether there are some differences
is crucial, as it can reveal patterns and attributes of the reposi-
tory that encourage or support the integration of such practices.
We conduct a statistical analysis to explore the characteristics
of projects adopting performance testing. Specifically, we
investigate three dimensions. First, we analyze the project
maturity by computing the lines of code (LOC), project
age, and the number of tests (excluding performance tests)
to understand the scale and testing emphasis of the projects.
We also consider the programming languages used, as it
can influence the availability and adoption of testing tools.
Next, we analyze the popularity, including the number of
stars and watchers, which reflect community interest and
engagement. We hypothesize that more popular projects might
adopt performance testing to ensure reliability and maintain
user satisfaction. Finally, we explore the development state
by assessing the number of distinct contributors, commits, and
total issues per project. A larger number of contributors or
more frequent commits could be indicative of a more dynamic
development environment, potentially leading to increased
adoption of performance testing to maintain system stability
and performance.

The analysis is performed on all the 5,563 non-trivial web
application repositories. Specifically, our sample includes the

77 repositories with performance testing and 5,486 without
performance testing. To compute the metrics, we use SEART
[36] and PYDRILLER [37]. Once the metrics are computed,
we assess whether there are differences between the two sets.
We analyze the metric distributions using boxplots and apply
the Kolmogorov-Smirnov test [38] to check for normality.
Then, we use the non-parametric Mann-Whitney U test [39] to
determine if there are statistically significant differences. We
set the confidence level α to 0.05, and account for multiple
comparisons by applying the Bonferroni correction [40]. When
statistically significant differences are detected, we compute
the effect size using Cliff’s delta [38], [41]. Finally, we build a
Logistic Regression Model to determine if the statistically sig-
nificant metrics remain influential when considered together.
We use the glm function in R to implement the model,
ensuring no multi-collinearity by applying the vif (Variance
Inflation Factors) function with a threshold value of 5 [42].

Number of Watchers Project Age (years) Size

Number of LOCs Number of Other Tests Number of Stars

Number of Commits Number of Contributors Number of Issues

0 100 200 300 0 5 10 15 0 250000 500000 750000

0 500000 1000000 1500000 0 1000 2000 3000 4000 5000 0 2500 5000 7500

10000 20000 30000 0 100 200 300 400 0 5000 10000 15000

Adoption of Performance Testing Adopted Not adopted

Figure 6: Distribution of repository characteristics for projects
with and without performance tests. Outliers are hidden for
ease of visualization.

B. Analysis of the Results

The distribution of the considered characteristics across the
two groups of projects is shown in Figure 6. The boxplots
highlight key differences between projects with and without
performance tests. Specifically, projects with performance tests
tend to be larger, both in terms of lines of code (LOC) and
size, which suggests that as project complexity increases,
adoption becomes more common. Furthermore, repositories
that have already implemented other testing practices are more
likely to incorporate performance testing, which could be
indicative of a more comprehensive quality assurance (QA)
process. This is further reflected in the higher number of
issues reported, suggesting more thorough issue tracking and
resolution. Furthermore, the adoption of performance testing
is more common in older repositories, with a higher number of
commits, which points to a more mature development process.

Table II: Results of the Mann-Whitney U and Cliff’s delta
Statistical Tests. The p-values in bold refer to the metrics
for which we accepted the alternative hypothesis, i.e., the
distribution of the characteristics in the two groups differs in
a statistically significant way.

Mann-Whitney U Test Effect size

Characteristic p-value Cliff’s delta Interpret.

of LOCs 5.03× 10−8 0.36 Medium

of Contributors 0.59 - -

of Stars 0.01 -0.15 Small

of Commits 8.3× 10−5 0.26 Small

Project Age (years) 0.18 - -

of Watchers 0.08 0.13 Small

Size 1.59× 10−5 0.30 Medium

of Other Tests 2.71× 10−12 0.47 Large

of Issues 0.0025 0.19 Small

Table II reports on the results of the statistical tests and their
effect sizes. Highlighted in bold are the p-values for which
we accepted the alternative hypothesis; i.e., the distribution
of the characteristic differs in a statistically significant way
between the two groups. The analysis reveals statistically
significant differences in most characteristics, except for the
project age and the number of contributors. The effect sizes
range from small to medium, with LOC and project size
exhibiting medium effect, confirming that projects adopting
performance testing are generally larger. Notably, the number
of other tests is the only characteristic with a large effect
size, reinforcing the idea that these projects have more solid
and comprehensive testing activities. However, project age and
number of contributors do not show significant differences,
suggesting that these factors have a weaker correlation with
the adoption of performance testing.

Finally, Table III reports the results of the Logistic Regres-
sion Model, which highlights that some characteristics could
be used to predict the likelihood of a project adopting per-
formance testing. Specifically, Total Issues, LOC, size, IsWe-
bJava, and IsWebPy (i.e., the programming language adopted
in the web application) show significant positive associations
with performance test adoption. When considering all features
together, the number of commits shows a significant negative
association. Other factors, such as contributors, project age,
watchers, and other test types, do not show statistically sig-
nificant effects, suggesting that these aspects have a limited
influence on the likelihood of adopting performance testing.

 RQ2. Projects with performance tests tend to have more
LOC, larger size, and a higher number of tests, suggest-
ing a strong commitment to quality assurance. Statistical
analysis confirms significant differences in most character-
istics, except for project age and contributors. The logistic
regression model highlights that LOC, size, total issues, and
programming languages adoption such as JAVA or PYTHON
are strong predictors of performance test adoption.

Table III: Results of the Logistic Regression Model. For each
variable, the table reports the estimate, standard error, and
statistical significance. Statistical significance is denoted by:
’***’ (p<0.001), ’**’ (p<0.01), ’*’ (p<0.05).

Logistic Regression Coefficients

Estimate S.E Sig. Rel.

(Intercept) -5.18 0.42 ***

LOC 3.23 1.53 *

Contributors 0.87 2.98 -

Stars -9.87 10.91 -

Commits -11.13 5.73 .

Project Age 0.10 0.59 -

Watchers -1.52 7.45 -

size 9.08 3.73 *

OtherTest 0.63 8.04 -

Total Issue 11.48 4.45 **

IsWebJava 2.28 0.29 ***

IsWebJs -0.41 0.39 -

IsWebTs 0.28 0.34 -

IsWebPy 1.08 0.34 ***

VI. RQ3: HOW FREQUENTLY ARE PERFORMANCE TESTS
CHANGED?

A. Research Method

Inspired by previous research on the prevalence and mainte-
nance of functional GUI test [33], we investigate the evolution
of performance tests as the web application under test changes
over time. To this end, we analyze the commit activities
related to both performance tests and the application itself
(as shown at the top of Table IV), quantifying how frequently
performance tests are modified, added, or removed.

We further assess the lifespan and maintenance patterns of
individual performance test files. We define the lifespan of a
performance test file as a sequence of similar blobs across
successive commits. Specifically, the first blob represents
the initial introduction of a test file; the subsequent blobs
correspond to modifications of the test file while retaining
similar content, and finally, the last blob marks the file’s final
occurrence. To determine whether two blobs from consecutive
commits are similar, we apply the definition provided by
Christophe et al. [33], considering two blobs as similar when
the more recent one retains at least 66% of the lines from the
older one. When this threshold is not met, the file is considered
replaced rather than modified. These definitions result in the
following maintenance metrics related to a single performance
test file, shown at the bottom of Table IV.

To collect the metrics previously described, we conduct the
historical analysis through the use of PYDRILLER and collect
all the versions of performance test files by excluding instances
where tests were added, renamed, or removed.

Table IV: Definitions of performance test maintenance metrics.
Note that the bottom section of the table presents metrics
related to the individual lifecycle of a test.

Metric Description

PTC Refers to commits that add, modify, or delete at least one
performance test.

AC Refers to commits that add, modify, or delete web application
code without touching performance test files.

SVDay Number of days the performance test survived.

SVMod Number of modifications to the performance test.

SVAC Number of application commits the test survived.

SVPTC Number of performance test commits the test survived.

B. Analysis of the Results

Table V provides a summary of metrics related to the
commit activity. The mean of the number of commits that
involve performance tests (#PTC) is 6.68 with a relatively
high standard deviation of 8.07, indicating variability in how
frequently performance tests are modified across projects. The
median and the first quartile of 3 and 2 respectively suggest
that a substantial portion of projects have a low number of per-
formance test-related commits. In contrast, there are projects
with a higher frequency of performance test modifications, as
indicated by the maximum of 37. Looking at the application
commits (#AC), the mean is 1,771.87 with a standard deviation
of 4,605.05, suggesting that application code is modified more
frequently than performance tests. The differences between
#AC and #PTC suggest that performance tests are not updated
as often as application code, potentially leading to outdated or
inadequate test coverage over time.

Table V: Statistics of co-evolution and maintenance metrics.

Co-evolution metrics Maintenance metrics

Statistic #PTC #AC SVDay SVMod SVAC SVPTC

Mean 6.68 1,771.87 1,787.70 2.90 2,531.95 6.46

Std Deviation 8.07 4,605.05 1,464.58 2.87 4,428.38 6.67

Median 3 429 1,394 2 1,345 4

1st Quartile 2 193.75 550 1 104 2

3rd Quartile 8.25 727.25 2,908 3 2,348 9

Min 1 10 1 1 1 1

Max 37 24,331 6,347 26 24,330 37

Regarding maintenance metrics, performance tests generally
persist for long periods. The survival duration (SVDay) has a
mean of 1,787.70 days and a median of 1,394 days, indicating
long-term retention. However, the high standard deviation
(1,464.58) reveals substantial variation—while some tests last
only a single day, others remain for up to 17 years (6,347
days). The modification frequency per test file (SVMod) is
relatively low, with a median of two and a mean of 2.90,
suggesting that most tests undergo minimal updates over time.
Notably, the first quartile and minimum value are both 1,
meaning that a significant portion of tests are never modified
after creation, raising concerns about their long-term rele-
vance. However, a few tests are updated frequently, with some

modified up to 26 times. This trend is further confirmed when
considering application changes. The SVAC metric shows a
mean of 2,531.95 and a median of 1,345, indicating that
performance tests generally persist across multiple application
updates. Yet, the wide range (1 to 24,330) suggests that while
some tests remain relevant through extensive evolution, many
become obsolete or are abandoned quickly. Similarly, SVPTC
reveals that performance tests survive through a mean of
6.46 and a median of four test-related commits, reinforcing
the observation that most are seldom updated, though a few
undergo frequent modifications over time.

 RQ3. Performance tests are generally long-lived, with a
median survival of 1,394 days. Most tests undergo minimal
modifications, and many are never updated after creation,
raising concerns about long-term relevance. While some tests
persist across multiple application updates (median of 1,345
commits), others become obsolete quickly. Performance tests
are modified infrequently compared to application code,
suggesting a risk of outdated test coverage. However, a
subset of tests undergoes frequent updates, indicating that
maintenance needs vary significantly across projects.

VII. RQ4: HOW ARE PERFORMANCE TESTS MODIFIED?

A. Research Method

In RQ3, we observed significant variations in maintenance
activities across projects. To gain deeper insights into when
and why these modifications occur, we analyze the evolution
of performance tests over time. Among the 226 tests examined,
only 120 have at least one subsequent commit reflecting
changes. For these 120 tests, we investigate 467 commits
to understand the motivations behind the modifications. To
achieve this, we employ qualitative content analysis [43], a
research method in which one or more inspectors systemati-
cally examine the data to infer meaning and identify emerging
concepts. Specifically, the first and third authors manually
review each test version, labeling the modifications between
successive versions. Whenever a change does not fit within
the existing categories, a new label is introduced to capture its
nature accurately.

B. Analysis of the Results

Through the analysis of 787 individual modifications (sev-
eral commits contained grouped multiple changes), we identi-
fied 192 unique labels. These labels represent the basis for
a taxonomy of performance test changes, as illustrated in
Figure 7. We found ten main categories of modifications,
each capturing a distinct aspect of how the test evolved.
Three categories exhibited finer granularity and were further
split into sub-categories to account for specific variations in
modification patterns. In one of these cases, an additional
sub-level classification was introduced to distinguish between
nuanced forms of changes.

The most common category is Workload Shape Modifi-
cations (298 cases), which encompasses changes aimed at

Type of

Changes

Variable and Property
changes - 103

Workload shape changes -
298

Code refactoring - 52

System behavior
monitoring - 59

License and copyright
changes - 19

Version and deprecation
changes - 26

Logging and debugging -
13

Network request changes
- 195

Logic element
management - 19

Transition to a different
technology - 3

Configuration management - 18
Input generation changes - 11
Global variable changes - 57
External input management - 17

Authorization changes - 5
Endpoint and configuration changes - 104
Request parameter changes - 33
Response data extraction - 23
Cookie changes 5
Header changes - 25

Add and remove management - 49
Conditional element management - 4
Request composition - 120
Request timing changes - 14

Assertion - 34
Monitoring tools - 25

User behavior - 187

User and duration - 111

Figure 7: The taxonomy with the different categories of
changes: the number represents the number of times that
specific change was detected in the analyzed commits.

adjusting test duration, user load, and request structure. These
modifications primarily fall into two sub-categories: User
behavior modifications and User and duration adjustments.
Developers frequently fine-tune workload parameters by al-
tering test duration, loop iterations, and user concurrency to
optimize load intensity and simulation accuracy. Additionally,
they modify user behavior composition by enabling, disabling,
adding, or removing user actions. Request timing changes (14)
such as adjusting delays, timeouts, and pacing between re-
quests are also common. The second most prevalent category,
Network Request changes (195 cases), reflects the continuous
adaptation of test configurations to evolving API requirements.
A substantial portion of changes involves updating Endpoints
and Configurations, including modifications to URL paths,
query parameters, ports, and hosts. Many changes also affect
POST parameters and authentication mechanisms, such as
adjusting access tokens and authorization headers. Addition-
ally, testers frequently modify response data extraction logic,
updating JSONPath extractors or introducing new processors
to ensure accurate test execution. Other changes that we find in
this category are Request Parameter, Header, Data Extraction
Adjustments, Cookie Management, and Authorization.

The Variable and Property category (103 cases) encom-
passes adjustments to global and test-specific variables. We
can observe changes to Global Variable, Configuration Man-
agement, External Input Management, and Input Genera-
tion Adjustments. Developers frequently introduce user-defined
variables, which have values that are updated dynamically,
and replace static values with dynamically generated ones to
improve test flexibility. Changes also refer to input sources,
such as modifying file paths and delimiters or incorporating
random input generators. Additionally, system parameters like
timeouts, command-line arguments, and resource allocation
settings are often fine-tuned.

System Behavior Monitoring modifications (59) reinforce
findings from RQ1, where we observed that testers prioritize
endpoint reliability over detailed performance metrics. The

two main sub-categories are Assertion Changes, which involve
modifications to validation checks ensuring system responses
meet expected conditions, and Monitoring Tools Adjustments,
where testers integrate or refine external monitoring tools to
track system performance and stability.

The Code Refactoring (52 occurrences) category of changes
aims at improving maintainability without altering test func-
tionality. These changes include formatting adjustments, im-
port updates, and variable renaming, reflecting a strong em-
phasis on readability and reducing technical debt over time.

Other categories, though less frequent, capture additional
aspects of performance test evolution. Version and Depre-
cation Updates (26) ensure compatibility by upgrading or
downgrading dependencies such as APACHE JMETER, re-
placing deprecated functions, and adopting new APIs. Li-
cense and Copyright changes (19) involve updates to copy-
right statements and license headers. Logic Element Man-
agement (19 cases) and Technology Transitions (3 cases)
reflect structural test modifications. The former includes mod-
ifications to scripting and pre-processing elements, such as
introducing or removing BeanShellPreProcessor and
JSR223Sampler scripts, suggesting that built-in tools were
insufficient, leading testers to rely on custom scripting. The
latter, though rare, involve replacing core test elements, such
as switching from TaskSet to SequentialTaskSet in
LOCUST or replacing a Thread Group with an Ultimate
Thread Group in APACHE JMETER. Finally, Logging and
Debugging modifications (13) aim to enhance error handling
and traceability, including introducing logging tools, adjusting
configurations, and adding print statements for debugging.

 RQ4. The taxonomy shows that performance tests evolve
through a variety of modifications, with most involving
Workload Shape (298 cases) and Network Request (195
cases) updates. Other key modifications include Variable
Adjustments (103), Monitoring (59), and Refactoring (52).
Less frequent updates address compatibility, structure, and
debugging. Finally, we also observed changes to update
license and copyright statements.

VIII. DISCUSSION AND IMPLICATIONS

The results provide several observations, reflections, and
implications for research and practice.

For practitioners, the study highlights that testers often
validate multiple API endpoints within a single test or en-
able/disable user behavior within the same test to simulate
different workloads, rather than using different test files. These
bad practices lead to misclassification of performance test
activities, highlighting a lack of standardized practices, and
underlining the need for naming conventions and structured
documentation to enhance the organization of performance
tests. Since many tests remain unchanged after their initial cre-
ation, implementing automated monitoring and update mecha-
nisms could help maintain their accuracy as software evolves,
ensuring that tests remain relevant and reflective of real-world

workloads. Additionally, our taxonomy provides a structured
perspective on test evolution, revealing that most modifications
focus on workload shape, network request adjustments, and
assertion refinements. This suggests that practitioners should
prioritize maintaining test realism and adaptability by regularly
reviewing workload configurations and endpoint interactions
to align with evolving system behavior.

For researchers, our findings indicate that performance tests
often lag behind application updates, leading to potential
inconsistencies in software validation. Investigating automated
approaches to synchronize test evolution with system changes
could enhance test reliability and effectiveness. The high fre-
quency of network request modifications suggests that perfor-
mance tests are particularly sensitive to API evolution, making
it crucial to explore techniques for automating API-aware test
updates. Moreover, our taxonomy serves as a foundation for
developing automated classification techniques that identify
and categorize test modifications, enabling researchers to build
predictive models for anticipating maintenance needs and
optimizing test co-evolution strategies. Beyond classification,
the taxonomy also presents an opportunity to deepen our
understanding of test evolution. While some tests persist
with minimal updates, others undergo frequent modifications,
raising important questions about test relevance, maintenance
costs, and the factors influencing test longevity. Further re-
search could investigate whether specific modification patterns
correlate with test effectiveness and how they impact software
quality over time.

IX. THREATS TO VALIDITY

Several factors may have influenced the conclusions drawn
in this study. Below, we discuss the main limitations and
mitigation strategies applied [44].
Threats to Construct Validity. Our study relied on GITHUB

web applications that use APACHE JMETER and LOCUST
for performance testing activities. Although other common
or paid frameworks may have been excluded , we believe
that our analysis accurately represents the current state of
performance testing practices.
As for the metrics computed in RQ2, we relied on au-
tomatic tools to extract project characteristics related to
maturity, popularity, and development activity. We acknowl-
edge the potential noise that may arise from automated
extraction, such as inaccuracies in LOC calculations, in-
complete metadata, or limitations in detecting development
contributions. To partially mitigate this threat, we employed
well-established tools that have been previously evaluated,
demonstrating good accuracy in repository mining and soft-
ware evolution analysis [36], [37].

Threats to Conclusion Validity. The first threat concerns
potential research bias during coding in RQ4, since this was
based on the researchers’ judgment. Although we adopted
preventive measures like independent review, we cannot
guarantee that coding would have been conducted differently
by other researchers. However, despite this limitation, we
believe our taxonomy remains a valuable contribution, as

no existing classification of this kind is currently available
in performance testing research.
Similarly, the classification of performance testing activities
and the workload design in RQ1 rely on manual analysis
conducted by two authors of the paper, both with three years
of experience in the field. While manual analysis introduces
the potential for subjectivity, the authors’ expertise partially
mitigate the risk of inconsistent classifications. Nonetheless,
variations in interpretation may still occur, particularly when
identifying performance activities and analyzing workload
design. In this respect, we made all our data publicly
available to make our results repeatable and reproducible [8].
Additionally, in the classification of performance testing
activities, we were unable to classify 22 LOCUST tests due
to the absence of configuration details. While this could limit
the completeness of the analysis, we believe that the remain-
ing data still provides valuable insights into performance
testing activities in open-source web applications.
As for the statistical methods employed in RQ2, we selected
the Logistic Regression Model after verifying its suitability
for our purpose. In addition, we applied the vif to discard
non-relevant metrics. These procedures followed established
guidelines [42], making us confident of the validity of the
conclusions drawn.

Threats to External Validity. Our study focused on open-
source projects selected from GITHUB, which are only a
fraction of the complete picture of open-source software.
Therefore, we cannot ensure that our findings generalize
when considering different software systems or different
contexts, e.g., industry projects. In this regard, we released
all materials publicly available to stimulate further research
that may corroborate our findings in different contexts [8].

X. CONCLUSION

This study explored the adoption and maintenance of
performance testing in open-source projects. Analyzing 77
projects using APACHE JMETER and LOCUST, we found that
performance testing is often introduced late and primarily
targets isolated endpoint validation rather than comprehensive
workload simulations. While these tests tend to be long-lived,
they are rarely updated, raising concerns about their long-
term relevance. Our analysis on 787 individual modifications
reveals that the most frequent maintenance activities involve
workload shape adjustments, network request modifications,
and assertion refinements. These findings underscore the need
for improved workload modeling, structured test maintenance,
and automated adaptation to evolving APIs. By providing
a taxonomy of performance test changes, this study lays
the groundwork for enhancing performance testing practices
in open-source software development. As part of our future
agenda, we plan to investigate strategies to improve test
maintainability and investigate whether integrating automated
approaches for workload modeling.

REFERENCES

[1] E. Weyuker and F. Vokolos, “Experience with performance testing of
software systems: issues, an approach, and case study,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 12, pp. 1147–1156, 2000.

[2] K. Eaton, “How one second could cost amazon $1.6 billion in
sales,” 2012, last accessed: Oct. 24, 2022. [Online]. Available:
https://web.archive.org/web/20221006004855/https://www.fastcompany.
com/1825005/how-one-second-could-cost-amazon-16-billion-sales

[3] D. A. Menascé, “Load testing of web sites,” IEEE internet computing,
vol. 6, no. 4, pp. 70–74, 2002.

[4] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser,
and P. Flora, “Analytics-driven load testing: An industrial experience
report on load testing of large-scale systems,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP), 2017, pp. 243–252.

[5] Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-scale
software systems,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1091–1118, 2015.

[6] P. Leitner and C.-P. Bezemer, “An exploratory study of the state of
practice of performance testing in java-based open source projects,”
in Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering, ser. ICPE ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 373–384. [Online].
Available: https://doi.org/10.1145/3030207.3030213

[7] S. Di Meglio, L. L. L. Starace, V. Pontillo, R. Opdebeeck, C. De Roover,
and S. Di Martino, “E2egit: A dataset of end-to-end web tests in open
source projects,” in 2025 IEEE/ACM 22nd International Conference on
Mining Software Repositories (MSR). IEEE/ACM, 2025, pp. 10–15.

[8] “Characterizing performance testing in open-source web projects: Adop-
tion, practices, and maintenance — figshare.com,” https://figshare.com/
s/8d8fc0045e0a627ade0e, 2025.

[9] A. van Hoorn, M. Rohr, and W. Hasselbring, “Generating probabilistic
and intensity-varying workload for web-based software systems,” in
Performance Evaluation: Metrics, Models and Benchmarks, S. Kounev,
I. Gorton, and K. Sachs, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 124–143.

[10] K. Yorkston, Performance Testing Tasks. Berkeley, CA: Apress,
2021, pp. 195–354. [Online]. Available: https://doi.org/10.1007/
978-1-4842-7255-8 4

[11] S. Di Meglio, L. L. L. Starace, and S. Di Martino, “Starting a new rest
api project? a performance benchmark of frameworks and execution
environments.” in IWSM-Mensura, 2023.

[12] R. P., K. Bhargav, and M. Tech, “A survey on performance testing
approaches of web application and importance of wan simulation in
performance testing,” International Journal on Computer Science and
Engineering, vol. 4, 05 2012.

[13] K. M. Alsante, L. Martin, and S. W. Baertschi, “A stress testing
benchmarking study,” Pharmaceutical technology, vol. 27, no. 2, pp.
60–73, 2003.

[14] M. Kalita and T. Bezboruah, “Investigation on performance testing
and evaluation of prewebd: A. net technique for implementing web
application,” IET software, vol. 5, no. 4, pp. 357–365, 2011.

[15] S. Nejati, S. Di Alesio, M. Sabetzadeh, and L. Briand, “Modeling and
analysis of cpu usage in safety-critical embedded systems to support
stress testing,” in Model Driven Engineering Languages and Systems:
15th International Conference, MODELS 2012, Innsbruck, Austria,
September 30–October 5, 2012. Proceedings 15. Springer, 2012, pp.
759–775.

[16] S. Di Meglio and L. L. L. Starace, “Evaluating performance and resource
consumption of rest frameworks and execution environments: Insights
and guidelines for developers and companies,” IEEE Access, 2024.

[17] C. Cannavacciuolo and L. Mariani, “Smoke testing of cloud systems,” in
2022 IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2022, pp. 47–57.

[18] E. Battista, S. Di Martino, S. Di Meglio, F. Scippacercola, and L. L. L.
Starace, “E2e-loader: A framework to support performance testing of
web applications,” in 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2023, pp. 351–361.

[19] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “Swat: A tool for
stress testing session-based web applications.” Citeseer.

[20] S. Shrivastava and S. Prapulla, “Comprehensive review of load testing
tools,” International Research Journal of Engineering and Technology,
vol. 7, no. 3392-3395, p. 43, 2020.

[21] [Online]. Available: https://jmeter.apache.org/
[22] R. K. Lenka, M. R. Dey, P. Bhanse, and R. K. Barik, “Performance and

load testing: Tools and challenges,” in 2018 International Conference
on Recent Innovations in Electrical, Electronics & Communication
Engineering (ICRIEECE). IEEE, 2018, pp. 2257–2261.

[23] R. Abbas, Z. Sultan, and S. N. Bhatti, “Comparative analysis of auto-
mated load testing tools: Apache jmeter, microsoft visual studio (tfs),
loadrunner, siege,” in 2017 International Conference on Communication
Technologies (ComTech), 2017, pp. 39–44.

[24] “Locust.io — locust.io,” https://locust.io/, [Accessed 23-02-2025].
[25] H. Malik, B. Adams, and A. E. Hassan, “Pinpointing the subsystems

responsible for the performance deviations in a load test,” in 2010
IEEE 21st International Symposium on Software Reliability Engineering,
2010, pp. 201–210.

[26] E. J. Weyuker and F. I. Vokolos, “Experience with performance test-
ing of software systems: issues, an approach, and case study,” IEEE
transactions on software engineering, vol. 26, no. 12, pp. 1147–1156,
2000.

[27] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker, “Software perfor-
mance testing based on workload characterization,” in Proceedings of
the 3rd International Workshop on Software and Performance, 2002, pp.
17–24.

[28] L. Traini, “Exploring performance assurance practices and challenges in
agile software development: an ethnographic study,” Empirical Software
Engineering, vol. 27, no. 3, p. 74, 2022.

[29] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in 2008 1st International Conference on software testing,
verification, and validation. IEEE, 2008, pp. 220–229.

[30] A. Zaidman, B. Van Rompaey, A. Van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, pp. 325–364, 2011.

[31] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained
co-evolution patterns of production and test code,” in 2014 IEEE
14th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2014, pp. 195–204.

[32] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production & test code,” in 2009 6th IEEE
International Working Conference on Mining Software Repositories.
IEEE, 2009, pp. 151–154.

[33] L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, “Prevalence
and maintenance of automated functional tests for web applications,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 141–150.

[34] “Smoke testing: A beginner’s guide — Grafana Labs — grafana.com,”
https://grafana.com/blog/2024/01/30/smoke-testing/, [Accessed 26-02-
2025].

[35] V. K. Chauhan, “Smoke testing.”
[36] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github

for msr studies,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, 2021, pp. 560–564.

[37] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. New York,
NY, USA: ACM, 2018, p. 908–911.

[38] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong, “Robust statistical methods
for empirical software engineering,” Empirical Software Engineering,
vol. 22, pp. 579–630, 2017.

[39] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[40] J. M. Bland and D. G. Altman, “Multiple significance tests: the bonfer-
roni method,” Bmj, vol. 310, no. 6973, p. 170, 1995.

[41] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[42] R. O’brien, “A caution regarding rules of thumb for variance inflation
factors,” Quality & quantity, vol. 41, no. 5, pp. 673–690, 2007.

[43] S. Cavanagh, “Content analysis: concepts, methods and applications.”
Nurse researcher, vol. 4, no. 3, pp. 5–16, 1997.

https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://doi.org/10.1145/3030207.3030213
https://figshare.com/s/8d8fc0045e0a627ade0e
https://figshare.com/s/8d8fc0045e0a627ade0e
https://doi.org/10.1007/978-1-4842-7255-8_4
https://doi.org/10.1007/978-1-4842-7255-8_4
https://jmeter.apache.org/
https://locust.io/
https://grafana.com/blog/2024/01/30/smoke-testing/

[44] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science

& Business Media, 2012.

	Introduction
	Background and Related Work
	Brief Introduction to Performance Testing Phases
	Related Work

	Goal and Research Questions
	RQ1: How is performance testing conducted in open-source web applications?
	Research Method
	Analysis of the Results

	RQ2: What are the main characteristics of projects adopting Performance testing?
	Research Method
	Analysis of the Results

	RQ3: How frequently are performance tests changed?
	Research Method
	Analysis of the Results

	RQ4: How are performance tests modified?
	Research Method
	Analysis of the Results

	Discussion and Implications
	Threats to Validity
	Conclusion
	References

