
Detecting Near-duplicate States in Web Application Model
Inference: a Tree Kernel-based Approach

Luigi Libero Lucio Starace
luigiliberolucio.starace@unina.it

Università degli Studi di Napoli Federico II
Naples, Italy

ABSTRACT
In the context of End-to-End testing of web applications, automated
exploration techniques (a.k.a. crawling) are widely used to infer
state-based models of the application under test. These models, in
which states represent dynamic web pages and transitions repre-
sent reachability relationships, can be used for several analysis and
testing tasks, such as test case or test artifact generation. How-
ever, current crawling techniques often lead to models affected by
near-duplicates, i.e., multiple states representing slightly different
pages that are in fact instances of the same functionality. This has
a negative impact on the subsequent model-based testing tasks,
adversely affecting, for example, size, running time, and achieved
coverage of generated test suites.

In my research, my goal is to improve the model inference of web
applications by devising novel near-duplicate detection techniques.
My vision is to leverage Tree Kernel (TK) functions, which have
been largely investigated and applied, thanks to their flexibility,
in the Natural Language Processing domain to compute similarity
between tree-structured objects. I envision to design specifically-
suited TK functions, meant to consider the peculiarities of the
Document Object Model (DOM) tree-structured representation of
web pages, to detect near-duplicate web pages, thus improving the
quality of the inferred models.

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; • Information systems→Web applications.

KEYWORDS
Near-duplicate detection, Model inference, Web Application Test-
ing, Tree kernels, Reverse engineering, Model-based testing

ACM Reference Format:
Luigi Libero Lucio Starace. 2021. Detecting Near-duplicate States in Web
Application Model Inference: a Tree Kernel-based Approach . In ISSTA ’21:
ACM SIGSOFT International Symposium on Software Testing and Analysis,
Doctoral Symposium Track, July 11–17, 2021, Aarhus, Denmark. ACM, New
York, NY, USA, 4 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Aarhus, Denmark
© 2021 Association for Computing Machinery.

1 PROBLEM STATEMENT AND RELATED
WORKS

Web applications have become pervasive and are involved in many
aspects of our daily lives. From home banking to public transit trip
planning, from e-commerce to social networks, from online news
agencies and newspapers to video streaming services, society relies
on web applications to an ever-growing extent for a multitude of
economic, social, and recreational activities. The impact of failures
in a web application may range from simple inconveniences to
end-users up to complete business interruption, and can poten-
tially cause significant damages. Hence, ensuring the quality and
correctness of web applications is of undeniable importance [21].

End-to-end (E2E) web testing is one of the main approaches
to ensure the quality of web applications. In this kind of activity,
testers exercise the Application Under Test (AUT) as a whole and
from the perspective of an end-user interacting with the Graphical
User Interface (GUI), i.e., the web pages, of the application. The goal
is to verify that the web application behaves as intended in response
to user-generated events and interactions with the GUI (e.g., clicks,
scrolls, forms filling and submissions, etc.), corresponding to usage
scenarios of interest. To do so, testers typically develop test scripts
that, leveraging test automation libraries such as Selenium [6],
automate the set of manual operations that the end-user would
perform on the GUI of the web application. Developing such test
scripts manually, however, is a time consuming and expensive task,
often neglected in web projects because of resource constraints [7].

To support E2E web testing activities, automated reverse-engi-
neering techniques are widely used to infer state-based models
of the AUTs [26]. These models can be used for several analysis
and testing tasks, such as test case generation [3–5, 17, 22] or test
artifact generation [24, 25].

A popular approach to model construction for modern web ap-
plications is automated state exploration [26], also referred to as
web application crawling [15]. In such models, a state represents a
dynamic web page of the application, and transitions between states
represent the fact that the target state is reachable from the source
one under particular conditions (e.g., when a particular event is
fired). Crawling-based techniques dynamically and systematically
analyze the AUT starting at an initial page, and then automatically
explore the application by generating events and checking the web
page for changes. When, as a result of a fired event, a state change
is detected, the model is updated to reflect the event causing the
new state.

From a testing view-point, these inferred models should contain
a minimal set of significantly different states, yet adequately cover
all the functionalities of the AUT. In practice, however, models
inferred automatically through state exploration are affected by

https://orcid.org/0000-0001-7945-9014

ISSTA ’21, July 11–17, 2021, Aarhus, Denmark Luigi Libero Lucio Starace

Marketplace

Book A
$ 9,99

Book B
$ 14,99

Book A

$ 9,99

Language:
Author:
Publisher:
Rating:

English
J. Doe
ABCD

★★★★

Book B

$ 14,99

Language:
Author:
Publisher:
Rating:

Italian
M. Rossi

WXYZ
★★★☆

Homepage Web page A Web page B

Figure 1: Example of near-duplicate web pages

near-duplicates [10, 11, 13, 16], i.e., replicas of the same functional
web page differing only by small, insignificant changes [26].

As an example, let us consider Figure 1, in which three web pages
from an imaginary bookstore web application are depicted. The
homepage of the application shows a catalog of available books.
After clicking on one of the books, the user is redirected to a detail
web page with additional information, from which it is possible to
add the book to the cart and finalize the purchase. The detail pages
for the two books in the example are of course different, but from
a functional testing view-point they are conceptually the same, as
both are an instance of the “Show book details” functionality. Simi-
larly, a catalog page containing three books would be conceptually
the same of the one depicted in the example, since they would both
represent the same “Show catalog” functionality.

From an E2E testing perspective, near-duplicate states in web
application models have a negative impact on the accuracy, com-
pleteness and effectiveness of the models, hindering the application
of model-based testing techniques. For instance, test suites gener-
ated frommodels with many near-duplicate states can be noticeably
worse in terms of size, running time, and achieved coverage [26].

To detect and discard such near-duplicate web pages during
their exploratory process, crawlers have adopted state abstraction
functions as a proxy for the similarity of web pages [26]. The way
these state abstraction functions are defined heavily impacts the
quality of the obtained models. State abstractions that are too strict
and mark as distinct any two web pages that are not exactly iden-
tical will likely result in models containing many near-duplicate
states. Conversely, state abstractions that are too loose and flag two
web pages with noticeable differences as same-state are likely to
result in incomplete models, in which many functionalities are not
represented by a dedicated state.

Many techniques have been developed to detect near-duplicate
web pages across different web applications. For instance, the prob-
lem of detecting duplicate and near-duplicate web pages arises
naturally in the web indexing process of search engines. In this
field, the concept of duplication and near-duplication is mainly
related to the content of the web page, and hence Information Re-
trieval techniques such as simhash [8] have been found to be quite
effective [13].

Detecting near-duplicate pages is also a challenge for automatic
phishing detection. In this case, malicious websites are often de-
signed to look as similar as possible to the original website they
try to impersonate, while maintaining an entirely different HTML

structure to avoid detection. Hence, Computer Vision techniques
such as [27] have often been applied with good results [1].

However, despite being a crucial step for effective model in-
ference activities, less work has been directed towards detecting
near-duplicates within the same web application. A first study in
this direction was presented at ICSE2020 [26]. In this study, 10
near-duplicate detection techniques from the different domains of
information retrieval, computer vision, and web testing are applied
and compared in the context of web application model inference.
That study highlighted that there is a need for further research in
devising near-duplicate detection techniques geared specifically
towards model inference.

We plan to fill this research gap by investigating novel near-
duplicate detection techniques specifically designed for supporting
model inference for web applications. In particular, we intend to
leverage Tree Kernel (TK) functions, a class of kernel functions
largely investigated in the Natural Language Processing domain
to evaluate similarity between tree-structured objects [20]. We
envision that TKs, thanks to their flexibility, might be effective tools
to capture different types of near-duplicate web pages, improving
the overall detection performance.

The remainder of this paper is organized as follows. In Section
2 we give some preliminary notions on TK functions and then,
in Section 3, we sketch the tree kernel-based approach we are
currently investigating to detect near-duplicates and hence improve
model inference for web applications. In Section 4 we present some
preliminary results we obtained, and in Section 5, we provide a
road-map detailing future research efforts.

2 TREE KERNEL FUNCTIONS
Tree Kernel (TK) functions are a particular family of kernel func-
tions which specifically evaluate similarity between two tree-struc-
tured objects. These functions have been extensively studied in
Natural Language Processing [20], and have also been applied with
promising results in the Software Engineering domain. In particular,
TKs have been applied on Abstract Syntax Tree representations of
source code for clone detection [9], and their usage is also being
investigated for test case prioritization tasks [2]. More recently,
[14, 23] presented an effective approach to fake website detection,
which leveraged TK functions.

To compute the similarity between two trees𝑇1 and𝑇2, TK func-
tions consider, for each tree, a set of tree fragments. A tree fragment
is a subset of nodes and edges of the original tree. Then, the simi-
larity between the tree fragments of the two trees is evaluated, and
the overall similarity of the two trees is computed by aggregating,
in some meaningful way, the similarities of the single fragments.
Depending on how the set of fragments to consider is defined, it is
possible to characterize different classes of tree kernel functions.
Widely-used classes include [19]:

• Subtree Kernels, which consider only proper subtrees of the
orginal trees, i.e., a node and all of its descendants, as frag-
ments.

• Subset tree Kernels, which consider as fragments a more gen-
eral structure than subtree kernels, relaxing the constraint
of taking all descendant of a given node and thus allowing
for incomplete subtrees, limited at any arbitrary depth.

Detecting Near-duplicate States in Web Application Model Inference: a Tree Kernel-based Approach ISSTA ’21, July 11–17, 2021, Aarhus, Denmark

<html>
<head>
<title></title>
<link/>

</head>
<body>
<section>
<h1></h1>
<p><a></p>
<figure>

</figure>

</section>
</body>

</html>

html

head

title link

body

section

h1 p

a

figure

img

Figure 2: An HTML document and its DOM representation

• Partial Tree Kernels, which consider an even more general
notion of fragment, in which the constraint of taking either
all children of a tree node or none at all is relaxed. In this
case, it is possible to include only some of the children of a
node in a fragment.

3 IMPROVING NEAR-DUPLICATE
DETECTIONWITH TREE KERNELS

As done in the work of Yandrapally et al. [26], we frame the near-
duplicate detection problem as a multinomial classification problem.
In particular, given a pair of web pages, the goal is to classify it into
one of the following distinct categories:

• Clone, if there is no semantic, functional or perceptible
difference between two web pages.

• Distinct, if there is any semantic or functional difference
between the two pages.

• Near-duplicate, if there are noticeable differences, but the
overall functionality being exposed is the same.

To this end, our approach consists in extracting a set of features
representing the similarity of the two web pages, and on using
these features to classify the web page pair. We envision that Tree
Kernel (TK) functions might be an effective tool to measure the
similarity of two web pages which, as shown in Figure 2, can be nat-
urally modeled using their tree-structured Document Object Model
(DOM) representation. In particular, each of the similarity features
we consider is a real-valued similarity score computed by a different
TK function. We believe that different TKs might be able to capture
different types of near-duplicate web pages, hence complementing
one-another and improving the overall classification performance.
In particular, we consider three standard tree kernel functions: a
subtree kernel, a subset-tree kernel and a partial tree kernel. More-
over, to investigate how different portions of the DOM tree impact
similarity computation and near-duplicate detection, and to make
our approach more general and customizable, we also introduce
the concept of DOM representation functions. Intuitively, these
functions represent a pre-processing step in which the DOM of a
web page can be transformed according to some meaningful strat-
egy. Currently, we are considering three basic DOM representation
strategies, as detailed in Table 1. From the pairwise combination of

Strategy Description

As-is This representation strategy leaves the DOM un-
changed;

Only body This representation strategy considers only the DOM
subtree rooted in the body element of the web page.

Only body with
no scripts

This representation strategy is the same as the only
body one, but also removes script elements along
with their subtrees.

Table 1: Considered DOM representation strategies

Book A

$ 9,99

Language:
Author:
Publisher:
Rating:

English
J. Doe
ABCD

★★★★

Book B

$ 14,99

Language:
Author:
Publisher:
Rating:

Italian
M. Rossi

WXYZ
★★★☆

TK-based
feature

computation

Similarity
Features

Classifier

Distinct
Near-duplicate
Clone

Web Page A

Web Page B

Tree Kernel
Functions

DOM Representation
Strategies

Figure 3: The proposed approach

the three considered TK functions and the three DOM representa-
tion strategies, nine different similarity features arise. Leveraging
these similarity features and existing open datasets with annotated
web page pairs, we use unsupervised learning approaches to train
an ad-hoc classifier. The proposed approach is summarized in Figure
3.

4 EVALUATION AND PRELIMINARY RESULTS
We plan to evaluate the proposed approach using the same data
and experimental procedure presented by Yandrapally et al. in [26],
which investigates the effectiveness of a number of state-of-the-
art near-duplicate detection techniques, and their impact on the
model-inference process. This way, our results can be directly com-
pared with the state-of-the-art. In particular, [26] compared 10
different near-duplicate detection techniques from the different do-
mains of Computer Vision, Information Retrieval, and Web Testing.
Moreover, that work also provided a large dataset of about 100k
annotated same-website web page pairs, consisting of three main
parts detailed as follows:

• SS is a set of ∼97k annotated web page pairs extracted from
9 open source web applications in a controlled environment.

• DS is a set of ∼1k annotated same-website web page pairs
extracted from about 1k real-world websites, randomly se-
lected from Alexa’s top 1 million URLs list.

• TS is a set of ∼500 additional annotated web page pairs
extracted from the same websites as DS.

ISSTA ’21, July 11–17, 2021, Aarhus, Denmark Luigi Libero Lucio Starace

Technique 𝐹1 score on SS 𝐹1 score on TS
PDiff [26] 0.53 0.67
TK-based SVM 0.58 0.68
Table 2: Macro-averaged 𝐹1 scores on SS and TS

To evaluate the effectiveness of the TK-based classification approach
we devised, we firstly extracted, for each web page pair in the
dataset, the TK-based similarity features we defined in Section 3.
To do so, we leveraged the well-known KeLP library [12]. Then,
similarly to [26], we used DS to train a SVM classifier, and then
evaluated classification performance on both SS and TS, measur-
ing the macro-averaged 𝐹1 classification score. The results of this
preliminary evaluation, which are reported in Table 2, show that the
proposed TK-based classification approach outperforms Perceptual
Diff (PDiff) [27], the best state-of-the-art technique among those
investigated in [26].

5 FUTURE RESEARCH ROAD MAP
The goal of my Ph.D. is to improve the model inference of web
applications by devising novel near-duplicate detection techniques.
The promising preliminary results we obtained in the classification
task we described in the previous section showed that tree kernel-
based similarity features can be effective for the problem at hand.
Encouraged by these results, during my Ph.D. we plan to further
investigate the potential of Tree Kernels in near duplicate detection
and model inference along several research directions.

Firstly, we plan to improve the classification performance. Along
this direction, we aim at designing custom TK functions specifically
geared towards detecting near-duplicate web pages, as we believe
that considering peculiar structural properties of web pages could
make TKsmore effective. Furthermore, we also plan on defining and
assessing additional andmore refined similarity features, leveraging
for example different kinds of TK functions, such as Subpath Kernels,
which were also recently applied, although in a different context,
to web pages [23].

We aim at implementing the solutions emerging from these
studies as open-source extensions of the well-known Crawljax
web crawler [18], that will be made freely available to Software
Engineering researchers and practitioners.

As for the empirical assessment, we plan to use the same data
and experimental procedure used by Yandrapally et al. in their
ICSE2020 paper [26], which provides a valuable state-of-the-art
benchmark both for near-duplicate classification performances and
for the effectiveness of the inferred models.

REFERENCES
[1] Sadia Afroz and Rachel Greenstadt. 2011. Phishzoo: Detecting phishing web-

sites by looking at them. In 2011 IEEE fifth international conference on semantic
computing. IEEE, 368–375.

[2] Francesco Altiero, Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi
Libero Lucio Starace. 2020. Inspecting Code Churns to Prioritize Test Cases. In
IFIP International Conference on Testing Software and Systems. Springer, 272–285.

[3] Anneliese A Andrews, Jeff Offutt, and Roger T Alexander. 2005. Testing web
applications by modeling with FSMs. Software & Systems Modeling 4, 3 (2005),
326–345.

[4] Matteo Biagiola, Filippo Ricca, and Paolo Tonella. 2017. Search based path and
input data generation for web application testing. In International Symposium on

Search Based Software Engineering. Springer, 18–32.
[5] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-

based web test generation. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 142–153.

[6] Andreas Bruns, Andreas Kornstadt, andDennisWichmann. 2009. Web application
tests with selenium. IEEE software 26, 5 (2009), 88–91.

[7] Hari Sankar Chaini and Sateesh Kumar Pradhan. 2015. Test script execution and
effective result analysis in hybrid test automation framework. In 2015 Interna-
tional Conference on Advances in Computer Engineering and Applications. IEEE,
214–217.

[8] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 380–388.

[9] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello. 2010.
A tree kernel based approach for clone detection. In 2010 IEEE International
Conference on Software Maintenance. IEEE, 1–5.

[10] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, Anna Rita Fasolino, and
Pasquale Granato. 2001. Clone analysis in the web era: An approach to iden-
tify cloned web pages. In Seventh Workshop on Empirical Studies of Software
Maintenance. 107.

[11] Dennis Fetterly, Mark Manasse, and Marc Najork. 2003. On the evolution of
clusters of near-duplicate web pages. In Proceedings of the IEEE/LEOS 3rd In-
ternational Conference on Numerical Simulation of Semiconductor Optoelectronic
Devices (IEEE Cat. No. 03EX726). IEEE, 37–45.

[12] Simone Filice, Giuseppe Castellucci, Danilo Croce, and Roberto Basili. 2015. Kelp:
a kernel-based learning platform for natural language processing. In Proceedings
of ACL-IJCNLP 2015 System Demonstrations. 19–24.

[13] Monika Henzinger. 2006. Finding near-duplicate web pages: a large-scale evalu-
ation of algorithms. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval. 284–291.

[14] Taichi Ishikawa, Yu-Lu Liu, David Lawrence Shepard, and Kilho Shin. 2020.
Machine learning for tree structures in fake site detection. In Proceedings of the
15th International Conference on Availability, Reliability and Security. 1–10.

[15] Manuel Leithner and Dimitris E Simos. 2020. XIEv: dynamic analysis for crawl-
ing and modeling of web applications. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing. 2201–2210.

[16] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting near-
duplicates for web crawling. In Proceedings of the 16th international conference on
World Wide Web. 141–150.

[17] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-based testing
of Ajax web applications. In 2008 1st International Conference on Software Testing,
Verification, and Validation. IEEE, 121–130.

[18] Ali Mesbah, Engin Bozdag, and Arie Van Deursen. 2008. Crawling Ajax by
inferring user interface state changes. In 2008 Eighth International Conference on
Web Engineering. IEEE, 122–134.

[19] Alessandro Moschitti. 2006. Efficient convolution kernels for dependency and
constituent syntactic trees. In European Conference on Machine Learning. Springer,
318–329.

[20] Alessandro Moschitti. 2006. Making tree kernels practical for natural language
learning. In 11th conference of the European Chapter of the Association for Compu-
tational Linguistics.

[21] Filippo Ricca, Maurizio Leotta, and Andrea Stocco. 2019. Three open problems in
the context of E2E web testing and a vision: NEONATE. InAdvances in Computers.
Vol. 113. Elsevier, 89–133.

[22] Filippo Ricca and Paolo Tonella. 2001. Analysis and testing of web applications.
In Proceedings of the 23rd International Conference on Software Engineering. ICSE
2001. IEEE, 25–34.

[23] Kilho Shin, Taichi Ishikawa, Yu-Lu Liu, and David Lawrence Shepard. 2021.
Learning DOM Trees of Web Pages by Subpath Kernel and Detecting Fake e-
Commerce Sites. Machine Learning and Knowledge Extraction 3, 1 (2021), 95–122.

[24] Andrea Stocco,Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2016. Clustering-
aided page object generation for web testing. In International Conference on Web
Engineering. Springer, 132–151.

[25] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2017. APOGEN:
automatic page object generator for web testing. Software Quality Journal 25, 3
(2017), 1007–1039.

[26] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-duplicate
detection in web app model inference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 186–197.

[27] Hector Yee, Sumanita Pattanaik, and Donald P Greenberg. 2001. Spatiotemporal
sensitivity and visual attention for efficient rendering of dynamic environments.
ACM Transactions on Graphics (TOG) 20, 1 (2001), 39–65.

	Abstract
	1 Problem Statement and Related Works
	2 Tree Kernel functions
	3 Improving Near-duplicate Detection with Tree Kernels
	4 Evaluation and Preliminary results
	5 Future Research Road Map
	References

