
Università degli Studi di Napoli Federico II

Scuola Politecnica e delle Scienze di Base
Dipartimento di Ingegneria Elettrica e Tecnologie

dell’Informazione

Corso di Laurea Magistrale in Informatica

Model-based Testing and Model
Checking for Safety-critical

Hierarchical Systems

Relatori

Professor Adriano Peron
Professor Massimo Benerecetti
Dottor Fabio Mogavero

Correlatore

Professor Guglielmo Tamburrini

Candidato

Luigi Libero Lucio Starace
N97/243

Anno Accademico 2017–2018

Università degli Studi di Napoli Federico II
Scuola Politecnica e delle Scienze di Base
Dipartimento di Ingegneria Elettrica e Tecnologie

dell’Informazione

Corso di Laurea Magistrale in Informatica

Model-based Testing and Model
Checking for Safety-critical

Hierarchical Systems

Relatori

Professor Adriano Peron
Professor Massimo Benerecetti
Dottor Fabio Mogavero

Correlatore

Professor Guglielmo Tamburrini

Candidato

Luigi Libero Lucio Starace
N97/243

Anno Accademico 2017–2018

Abstract

The ever-growing magnitude and complexity of computer systems, along with the pressure
to drastically reduce system development time and the rising society’s reliance on their
correctness, make the delivery of correct systems an extremely important and di�cult
task. Traditional systems veri�cation techniques such as testing often prove themselves
inadequate to face such challenges, thus, both in academia and industry, techniques are
sought to reduce and ease the veri�cation e�orts while increasing their e�ectiveness.
The model-based veri�cation approach introduces formal methods in the veri�cation
process and allows for the application of techniques ranging from automatic test case
generation to model checking. This thesis work extends previous research in model-based
veri�cation conducted within the CRYSTAL European project. In such previous research,
the Dynamic State Machines (DSTM) formal speci�cation language was introduced, along
with an automatic test case generation procedure from a DSTM model. In this thesis work,
several crucial issues with the previously-de�ned procedure are detected and addressed
by devising a novel procedure. Furthermore, a novel logic formalism (Hierarchical Linear-
time Temporal Logic – HLTLE) is proposed and theoretical foundations for DSTM model
checking are laid down.

ii

Sommario

Le sempre crescenti estensione e complessità dei sistemi informatici, unitamente alla
pressione per ridurre drasticamente i tempi di sviluppo e al sempre maggiore a�damento
che la società ripone nella loro correttezza, rendono la creazione di sistemi corretti un
compito estremamente importante e arduo. Le tecniche di veri�ca tradizionali come il
testing spesso si rivelano inadeguate ad a�rontare il problema e, quindi, sia in ambito
accademico che industriale si ricercano nuove tecniche che possano ridurre gli sforzi di
veri�ca e allo stesso tempo aumentare l’e�cacia del processo. L’approccio alla veri�ca
basato su modelli (model-based) introduce nel processo di veri�ca i metodi formali e rende
possibile l’applicazione di diverse tecniche che spaziano dalla generazione automatica di
casi di test al model checking. Questo lavoro di tesi estende attività di ricerca precedenti
nell’ambito delle tecniche di veri�ca basate su modelli condotte all’interno del progetto
Europeo CRYSTAL. In queste precedenti attività è stato de�nito il linguaggio di speci�ca
formale Dynamic State Machines (DSTM) ed è stata prodotta una procedura per generare
automaticamente casi di test a partire da un modello DSTM. Nel presente lavoro di tesi
sono state individuate diverse criticità nella procedura precedentemente de�nita. Queste
criticità sono state risolte proponendo una nuova procedura per la generazione automatica
di casi di test. Inoltre, viene proposto un nuovo formalismo logico (Hierarchical Linear-
time Temporal Logic – HLTLE) e vengono poste le basi teoriche necessarie ad arrivare a
una procedura di model checking per modelli DSTM.

iii

Contents

Introduction 1

Systems veri�cation: model-based testing and model checking 1
About this thesis work . 2

1 Dynamic State Machines: a formal modelling language 4

1.1 A comparison with other modelling languages 4
1.2 DSTM Syntax . 5

1.2.1 Control �ow . 5
1.2.2 Data �ow . 11

1.3 DSTM Semantics . 15
1.3.1 Semantics of transition decorations 15
1.3.2 Machine instantiation . 18
1.3.3 Semantics by means of a Labelled Transition System 19

2 Automatic test case generation from Dynamic State Machines 29

2.1 The Spin model checker and Promela: a brief introduction 30
2.1.1 The Spin model checker . 30
2.1.2 The Promela speci�cation language 31

2.2 Deriving Promela models from DSTMs 36
2.2.1 An overview of the translation process 37

2.3 Flattening the DSTM into ordinary state machines 37
2.4 Promela encoding for the �at model . 42

2.4.1 Translation of data-�ow elements 43
2.4.2 An overview of the Promela speci�cation 44
2.4.3 Mapping a �at DSTM to a Promela speci�cation 45
2.4.4 Enforcing the steps semantics . 47
2.4.5 Mapping a DSTM model to a Promela speci�cation 52

2.5 Test case generation . 56

3 Reasoning about Hierarchical Concurrent Computations with Interrupts 57

3.1 Hierarchical Temporal Logic with Interrupts 57
3.2 Communicating Structured Automata with Interrupts 63
3.3 Deciding CHAE emptiness . 71

iv

Contents v

3.4 Satis�ability of HLTLEL over hierarchical computations 73
3.5 HLTLEL Model Checking . 80

Conclusions 89

Appendix A Translating DSTM models to Promela: a complete example 90

A.1 The Counting DSTM model . 90

Bibliography 99

Introduction

Systems verification: model-based testing and model

checking

In today’s world, computer and software systems are ubiquitous and involved in almost
every aspect of daily life. From railway-tra�c control systems to smartphones, from
medical appliances to the stock exchange market, from power plants to communication
networks, society relies on such systems to an ever-growing extent, making their reliability
an issue of great social importance. Furthermore, it is increasingly more rare to �nd
isolated computer systems, as they are typically embedded in larger contexts, interacting
with several other concurrently-executing systems over wired and wireless networks.
This trend, besides the fact that they perform increasingly more complicated tasks, makes
computer systems’ complexity grow apace, along with the di�culty of their veri�cation.

A system’s veri�cation is the process of checking that a system, a design, or a prototype
meets certain requirements obtained from a given speci�cation. A system is deemed correct
with regard to a speci�cation if it ful�ls all of the speci�cation’s requirements. When
dealing with the veri�cation of software systems, the major techniques used in practice
are code inspection and testing. Code inspection, also known as peer review, consists in a
careful scrutiny of the source code carried on by programmers/software engineers that
preferably are not involved in the development of the system under veri�cation. This kind
of analysis is completely static and the software is not executed. The testing technique,
on the contrary, is dynamic and actually executes the software under veri�cation. A
suite of test cases, each specifying inputs and expected system behaviour (derived from a
speci�cation), are typically produced by software testers and used to inspect a – usually
very small – subset of the possible system’s behaviours. Both these techniques are rather
e�ective at detecting errors – and are in fact largely used in software projects – but have
downsides that it is necessary to consider.

Firstly, as noted by Dijkstra in [1], these techniques “can be a very e�ective way to
show the presence of bugs, but are hopelessly inadequate for showing their absence”. Because
of this, these techniques alone are not su�cient to provide the high level of correctness
con�dence expected for the so-called safety-critical systems, i.e. those systems whose
malfunctioning can cause severe damage to people or to the environment. Safety-critical
systems include, for example, control systems for vehicles, medical appliances, nuclear

1

Introduction 2

0

10

20

30

40

50

Time (non linear)→

In
tro

du
ce
d
er
ro
rs

(in
%)

0

2

4

6

8

10

12

Analysis Design Programming Unit Testing System Testing Operation

Re
pa
ir
co
st
(in

10
00

of
US

$)introduced errors (%)
detected errors (%)
repair cost per error

Figure 1: Software lifecycle and error introduction, detection, and repair costs [3]

power plants, etc.
Secondly, testing and code inspection are not very e�ective on concurrent systems,

since intuition often fails to fully grasp the complexity and non-deterministic nature of
concurrency. To put it in Lamport and Owicki’s words [2], “there is a rather large body of
sad experience to indicate that a concurrent program can withstand very careful scrutiny
without revealing its errors” and “the only way we can be sure that a concurrent program
does what we think it does is to prove rigorously that it does it.”

Finally, testing and code inspection can only be applied in the later stages of the
software lifecycle and, as shown in Figure 1, the repair cost for errors detected in the later
stages is way higher than the cost for error detected in the initial phases.

The model-based veri�cation approach tries to overcome the previously-discussed
shortcomings and to obtain more e�ective veri�cation techniques by applying formal
methods, i.e. the “mathematics for modelling and analysing ICT systems” [3]. The �rst
essential step to the application of model-based veri�cation techniques, as the name itself
suggests, is to abstract an accurate and unambiguous mathematical representation of
the system under veri�cation, namely the formal speci�cation. Often, this modelling
phase alone – prior to the application any form of veri�cation – leads to the detection of
incompleteness, ambiguities, and inconsistencies in the “informal” speci�cations.

Once a formal speci�cation is de�ned, it is possible to apply model-based testing
techniques to automatically generate test cases, or model checking techniques to mathe-
matically prove that a certain property holds in every possible behaviour of the model.

About this thesis work

This thesis work originates from research on formal modelling languages and model-based
testing conducted within the context of the ARTEMIS Joint Undertaking project CRYSTAL

Introduction 3

(CRitical sYSTem engineering AcceLeration) [4], and in particular in [5, 6, 7]. In these
works, a novel modelling formalism called Dynamic STate Machines (DSTM), explicitly
devised to model interrupting hierarchical systems and to meet industrial requirements
in design, veri�cation and validation of complex control systems, is introduced, along
with a procedure to automatically derive test cases from a DSTM model.

Chapter 1, after giving a brief overview of DSTM key features and a comparison
with other modelling formalisms, describes DSTM formal syntax and semantics. Chapter
2 proposes a new procedure to automatically generate test cases from a DSTM model,
addressing several issues a�icting the original procedure described in [5, 6]. Finally,
Chapter 3, in an initial e�ort to lay down a theoretical foundation for DSTM model check-
ing, proposes a logic (Hierarchical Linear-time Temporal Logic with Interrupts - HLTLE)
designed to predicate about computations of interrupting hierarchical systems. A concrete
instantiation of this logic is then given in terms of Communicating Structured Automata
with Interrupts (CSAE), which are simpler systems than DSTM, yet maintain the most
important characteristics of hierarchy, concurrency and the possibility of interrupts, and
therefore are better-suited for a preliminary study. After restricting the focus to the local
fragment of HLTLE (HLTLEL) and to the sub-class of non-recursive CSAE (Communicating
Hierarchical Automata – CHAE), algorithmic results for the emptiness problem of CHAE,
the satis�ability of HLTLEL formulae over the class of CHAE computations, and �nally
model checking for CHAE models against HLTLEL properties are provided.

–1–

Dynamic State Machines: a formal

modelling language

Contents: 1.1 A comparison with other modelling languages. 1.2 DSTM Syntax. 1.2.1 Control
�ow – 1.2.2 Data �ow. 1.3 DSTM Semantics. 1.3.1 Semantics of transition decorations – 1.3.2 Machine
instantiation – 1.3.3 Semantics by means of a Labelled Transition System.

The Dynamic STate Machine (DSTM) formalism is a recently-developed modelling
language originally proposed by Benerecetti et al. in [5] and originating within the con-
text of the ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYSTem engineering
AcceLeration) [4]. DSTM is explicitly devised to meet industrial requirements in de-
sign, veri�cation and validation of complex control systems, and includes in its formal
framework both complex control �ow constructs such as asynchronous forks, preemp-
tive termination, recursive execution and complex data �ow constructs such as custom
complex type de�nition, parametric machines, and inter-process communication.

1.1 A comparison with other modelling languages

A great deal of formal languages have been proposed and used for modelling purposes.
For example, Finite State Machines (FSMs) are often used to model sequential circuits and
communication protocols [8]. Statecharts, introduced by Harel in [9], are widely used
in software engineering and extend FSMs with a notion of hierarchy and concurrency.
Both in the UML [10] and in the STATEMATE [11] variants, statecharts have no concept
of modules and instances. If multiple instances of the same module are required, it is
necessary to de�ne each one explicitly. Moreover, dynamic instantiation is not allowed.
Communicating Hierarchical Machines (CHMs), proposed by Alur et al. in [12], introduce
the notion of model as a sequence of modules, each made by nodes and boxes containing
sequences of modules. A transition entering a box is a transition instantiating all the
modules associated with the box, thus allowing for more succinct representations than

4

Chapter 1 - Dynamic State Machines: a formal modelling language 5

statecharts. The introduction of modules also allows for the de�nition of Recursive State
Machines (RSMs) [13] in which a module can instantiate itself but concurrency is not
allowed.

DSTMs borrow many syntactic elements from UML statecharts, and extend them with
the notion of module and with the possibility of recursion and dynamic instantiation
(which are not allowed in CHMs). Notice that a machine is capable of dynamically
instantiating one of its modules when the number of concurrently-executing instances of
said module is decided at run-time.

1.2 DSTM Syntax

This section formally de�nes DSTM syntax, with Subsection 1.2.1 detailing the syntax of
control �ow elements and Subsection 1.2.2 de�ning the syntax of data �ow elements.

1.2.1 Control flow

Given a set P of parameters, a Dynamic STate Machine (DSTM) model is a sequence of
machines M1,M2, . . . ,Mn communicating over a set X of global variables and a set C of
global communication channels. Machine M1 is the initial machine, namely the highest
level of the hierarchical system, and cannot be parametric. Machines Mi , i ∈ {2, . . . ,n},
are possibly parametric over a set of parameters Pi ⊆ P . Parameters are aliases for
channels and variables and are actualized at runtime when instantiating a parametric
machine, allowing multiple instantiations of the same machine with di�erent parameter
values. When a parametric machine is instantiated, each parameter is mapped to its actual
value by means of a parameter-substitution function. A (possibly parametric) machine
Mi represents a module in the speci�cation and is de�ned as a state-transition diagram
composed by vertices and transitions connecting them. The following kinds of vertices
are possible:

node basic control state of a machine;

entering node initial pseudo-node of a machine. A machine may specify multiple
entering nodes, corresponding to di�erent initial conditions;

initial node default entering pseudo-node of a machine, to be used when no entering
node is explicitly speci�ed. There must be exactly one for each machine;

exit node �nal (or exiting) node of a machine. A machine may specify multiple exiting
nodes, corresponding to di�erent termination conditions;

box node modelling the parallel activation of machines associated with the box itself.
A transition entering a box represents the parallel activation of the correspond-
ing machines, while a transition exiting a box corresponds to a return from said
activation.

Chapter 1 - Dynamic State Machines: a formal modelling language 6

fork control pseudo-node modelling the activation of new processes. Such activation
may be either synchronous (the forking process is suspended and waits for the
activated processes to terminate) or asynchronous (the forking process continues its
activity along the newly-activated processes).

join control pseudo-node used to synchronize the termination of concurrently executing
processes or to force their termination when necessary (preemptive join).

In the description above the vertices corresponding to stable, meaningful control points
are called nodes, as opposed to pseudo-nodes, which are only transient points.

Transitions represent changes in the control state of a machine. A transition is labelled
with a name and decorated with a trigger (an input event originating from the external
environment or from other concurrent machines), a guard (a Boolean condition on the
current contents of variables and channels) and an action (one or more statements on
variables and channels). For a transition to be �red it is necessary that its trigger is ful�lled
and that its guard is satis�ed. When a transition �res, its action is executed with possible
side-e�ects.

For the sake of exposition, assume the availability of the syntactic categories of well-
formed triggers ΞP , guards ΦP , actions AP , and parameter-substitution functions ϒP over
a set P of parameters. These syntactic categories will be formally de�ned in Subsection
1.2.2. Let τ denote the trivial trigger (no external event is required), True denote the trivial
guard (always satis�ed), and ε denote the empty action (no side e�ects).

De�nition 1 (Dynamic STate Machine). A DSTM D is a tuple 〈M1, . . . ,Mn,X ,C, P〉
where:

• X (resp. C and P) is a �nite set of variables (resp. channels and parameters);

• Mi is a machine over X , C and P of the form

〈Pi,Ni, Eni, df i, Exi, Bxi,Yi, Fki, Jni,Λi〉, where:

– Pi ⊆ P is the local set of parameters of the i-th machine. If i = 1, Pi = � (the
initial machine cannot be parametric).

– Ni is a �nite set of nodes;
– Eni is a �nite non-empty set of entering pseudo-nodes;
– df i ∈ Eni is the default entering pseudo-node;
– Exi ⊆ Ni is the set exiting nodes;
– Bxi is a �nite set of boxes;
– Yi : Bxi → {1, . . . ,n}∗ is a function mapping each box to a sequence of

machine indices;
– Fki (resp. Jni) is the �nite set of fork (resp. join) pseudo-nodes.

Chapter 1 - Dynamic State Machines: a formal modelling language 7

– Λi de�nes the machine’s transitions and is a tuple of the form

〈Ti, Srci, Trgi,Deci, Insti〉, where:

∗ Ti is a �nite set of transition labels;
∗ Srci : Ti → Sourcei is a function associating each transition label with

a source vertex. All vertices except for �nal nodes can be source of a
transition. Formally, Sourcei = (Ni \ Exi) ∪ Eni ∪ Bxi ∪ (Bxi × Ex(D)) ∪
Fki ∪ (Fki × {↓}) ∪ Jni , with Ex(D) = ⋃n

j=1 Ex j ;
∗ Trgi : Ti → Targeti is a function associating each transition label with a

target vertex. Entering pseudo-nodes cannot be target of any transition.
Targeti = Ni ∪Bxi ∪(Bxi × En(D))∪Fki ∪ Jni ∪(Jni × {⊗}), with En(D) =⋃n

j=1 Ex j ;
∗ Deci : Ti → ΞPi × ΦPi ×APi is a function associating each transition label

with its decoration.
∗ Insti : Ti ⇀ ϒP is a partial function associating transition labels whose

target is a box with a sequence of parameter-substitution functions, rep-
resenting the parameter actualization for each machine instantiated by
the box.

Note that the pairing of a fork pseudo-node with the symbol ↓ (resp. of a join pseudo-
node with the symbol ⊗) is used to qualify a source fork as asynchronous (resp. a target
join as preemptive).

Example 1 (TheCounting DSTM – part 1). As an example, consider the DSTMCounting =
〈M1,M2,M3,X ,C, P〉 where M1,M2,M3 are respectively the machines Main, Counter and
Incrementer represented in Figure 1.1. In the proposed graphical formalism, default
entering pseudo-nodes are depicted as black circles, entering pseudo-nodes as white
circles, �nal nodes as crossed-out white circles. Boxes are represented by rectangles and
decorated with a comma-separated list of associated machines enclosed in square brackets.
Nodes are drawn as rounded rectangles and fork and join pseudo-nodes are represented
by black bars. Each node and pseudo-node is decorated with its name. Transitions are,
as usual, drawn as directed edges between the source and the target vertices. Formally,
we have that machines M1 (Main), M2 (Counter) and M3 (Incrementer) are respectively
de�ned as follows:

• P1 = �; En1 = df 1 = {initial}; Ex1 = {interrupted, stopped}; N1 = {idle1} ∪ Ex1;
Bx1 = {CounterBox}; Fk1 = �; Jn1 = �; Y1 = {(CounterBox, 2)};

• P2 = {P_to}; En2 = df 2 = {default}; Ex2 = {limit}; N2 = {idle2}∪Ex2; Jn2 = {jn};
Bx2 = {BoxIncr1,BoxIncr2}; Y2 = {(BoxIncr1, 3), (BoxIncr2, 3)}; Fk2 = {fk};

• P3 = {P_limit}; df 3 = {byOne}; En3 = {byTwo} ∪ df 3; Ex3 = {finished}; N3 =
{SimpleIncr,DoubleIncr} ∪ Ex3; Bx3 = �; Fk3 = �; Jn3 = �; Y3 = �;

Chapter 1 - Dynamic State Machines: a formal modelling language 8

initial

idle1

counterBox
[Counter]

limit

interrupted

stopped

T1 T2

T3

T4

Main

default

idle2

fk

boxIncr1
[Incrementer]

boxIncr2
[Incrementer]

byTwo
jn

limit

T5 T6

T7

T8

T9

T10

T11

Counter

byOne

byTwo

simpleIncr

doubleIncr

finished

T12

T13
T14

T15

T16

Incrementer

Figure 1.1: The Counting DSTM speci�cation

T1 Src1 Trg1 Dec1 Inst1

T1 initial idle1 〈τ , True, ε〉 �
T2 idle1 counterBox 〈τ , True, ε〉 P_to=100
T3 counterBox interrupted 〈signal?, True, ε〉 �
T4 (counterBox, limit) stopped 〈τ , True, ε〉 �

T2 Src2 Trg2 Dec2 Inst2

T5 default idle2 〈τ , True, ε〉 �
T6 idle2 fk 〈τ , True, ε〉 �
T7 fk boxIncr1 〈τ , True, ε〉 P_limit=P_to
T8 fk (boxIncr2, byTwo) 〈τ , True, ε〉 P_limit=P_to
T9 boxIncr1 (jn, ⊗) 〈τ , True, ε〉 �
T10 boxIncr2 jn 〈τ , True, ε〉 �
T11 jn limit 〈τ , True, ε〉 �

T3 Src3 Trg3 Dec3 Inst3

T12 byOne simpleIncr 〈τ , True, ε〉 �
T13 byTwo doubleIncr 〈τ , True, ε〉 �
T14 simpleIncr simpleIncr 〈τ , x<P_limit, x++〉 �
T15 doubleIncr doubleIncr 〈τ , True, x+=2〉 �
T16 simpleIncr finished 〈τ , x≥P_limit, ε〉 �

Table 1.1: Transition structure for the DSTM model Counting

Chapter 1 - Dynamic State Machines: a formal modelling language 9

Transitions, namely the structures Λi∈{1,2,3}, are detailed in Table 1.1. More considerations
on this speci�cation’s transitions will follow in Example 2.

DSTM syntax requires for each transition t ∈ Ti of a given machine Mi of a DSTM
speci�cation D to belong to one of the classes detailed in Table 1.2, where α ∈ AP is used
to denote a generic action, ϕ ∈ ΦP stands for a generic guard, ξ ∈ ΞP represents a generic
trigger and ξ̂ ∈ ΞP \ {τ } denotes a non-trivial trigger. τ , True and ε denote, as already
said, the trivial trigger, the trivial guard and the empty action, respectively.

De�nition 2 (Well-formed DSTM). A DSTM speci�cation

D = 〈M1,M2, . . . ,Mn,X ,C, P〉

is well-formed if each transition in each of its machines belongs to one of the classes
de�ned in Table 1.2 and the following additional constraints are satis�ed by each machine:

(i) only transitions whose target is a box may specify parameter-substitution functions.
If t ∈ Ti is a transition entering a box B ∈ Bxi such that Yi(B) = m1, . . . ,mk then
Insti(t) = `1, . . . , `k with `j ∈ ϒPmj

de�ned on the parameters of themj-th machine
for each j ∈ {1, . . . ,k};

(ii) call by entering transitions must have as target a pair of the form (b, en) where
b ∈ Bxi is a box instantiating exactly one machine and en ∈ Enj with j = Yi(b).
Similarly, return by exiting transitions must have as source a pair of the form (b, ex)
whereb ∈ Bxi is a box instantiating exactly one machine and ex ∈ Ex j with j = Yi(b).

(iii) if a box b ∈ Bxi is the target of either a call by entering or a call by default transition
having a fork pseudo-node as source, then there is no other transition whose target
is b and each transition having b as source has a join pseudo-node as target.

(iv) for each join pseudo-node jn ∈ Jni there is a single corresponding fork pseudo-node
fk ∈ Fki . If there is an asynchronous fork transition exiting from fk then there is
an entering join transition whose target is jn. Moreover, for each jn ∈ Jni there is
at most one transition t ∈ Ti such that Trg(t) = (jn, ⊗). If a box b ∈ Bxi is target of
either a call by default or a call by entering transition whose source is fk, then b
either has no exiting transitions or has return (either by default, by exiting or by
interrupt) transitions whose target is jn.

In De�nition 2, constraint (i) guarantees the coherence of parameter substitution
functions, (ii) guarantees that the entering (resp. exiting) nodes associated with a box
are actually entering (resp. exiting) nodes of the machine instantiated by said box, (iii)
ensures that a box called after a fork cannot be called in other ways and has exiting
transitions leading only to join pseudo-nodes, (iv) requires that for each asynchronous fork
transition there is an entering join transition and that a box called after a fork fk either
does not terminate at all or participates with return transitions to all the join pseudo-nodes

Chapter 1 - Dynamic State Machines: a formal modelling language 10

Transition class Source Target Decoration

implicit Eni Ni 〈τ , True,α〉
internal Ni Ni 〈ξ ,ϕ,α〉
entering fork Ni Fki 〈ξ ,ϕ,α〉
asynch. fork Fki × {↓} Ni 〈τ , True,α〉
entering join Ni Jni ∪ Jni × {⊗} 〈ξ ,ϕ, ε〉
exiting join Jni Ni 〈τ , True,α〉

return by default Bxi Jni ∪ Jni × {⊗} 〈τ , True, ε〉
Bxi Ni ∪ Bxi ∪ Fki 〈τ , True,α〉

return by exiting Bxi × Ex(D) Jni ∪ Jni × {⊗} 〈τ , True, ε〉
Bxi × Ex(D) Ni ∪ Bxi ∪ Fki 〈τ , True,α〉

return by interrupt Bxi Jni × {⊗} 〈ξ̂ , True, ε〉
Bxi Ni ∪ Bxi ∪ Fki 〈ξ̂ , True,α〉

call by entering Ni ∪ Bxi Bxi × Eni 〈ξ ,ϕ,α〉
Fki ∪ Jni Bxi × Eni 〈τ , True,α〉

call by default Ni ∪ Bxi Bxi 〈ξ ,ϕ,α〉
Fki ∪ Jni Bxi 〈τ , True,α〉

Table 1.2: Syntactic constraints on DSTM transitions

associated with fk. Constraints (iii) and (iv) ensure that, at any instant in time, the control
state of the machine can be located in at most one node and enforce a correspondence
between join and fork pseudo-nodes. Note that this correspondence is total (each join
pseudo-node has a corresponding fork) but might not be injective since there might be
forks with no corresponding joins as synchronization is not mandatory.

Example 2 (The Counting DSTM speci�cation – part 2). Let us continue with Example 1,
referring to the Counting DSTM represented in Figure 1.1 whose transitions are detailed
in Table 1.1. Note that: transitions T1, T5, T12, T13 belong to the implicit transition class;
T14 and T15, T16 are internal transitions; transitions T6 and T11 are, respectively, entering
fork and exiting join transitions; T2 and T7 are call by default transitions while T8 is a call
by entering. T2, T7 and T8 are transitions with a non-empty substitution function since
they enter boxes instantiating parametric machines. Moreover, T8 satis�es constraint (ii)
of de�nition 2 since its target box boxIncr2 instantiates only the Incrementer machine and
byTwo is indeed an entering state of the latter machine. T9 and T10 are return by default,
with the �rst having also the quality of being preemptive. T3, with its non-trivial trigger
signal?, is a return by interrupt while T4 is a well-formed return by exiting since its source
is (counterBox, limit) and counterBox instantiates exactly one Counter machine and limit
is an exiting state of such instantiated machine. It is immediately ensured that Counting
satis�es constraints (iii) and (iv) since forks and joins are only used in the Incrementer
machine and boxes boxIncr1 and boxIncr2 have only one entering call transition each

Chapter 1 - Dynamic State Machines: a formal modelling language 11

default

waiting

fk boxIncr
[Incrementer]

jn

T1 T2

T3

T4

T5

T6

T7

Dynamic

Figure 1.2: The Dynamic DSTM speci�cation

T1 Src1 Trg1 Dec1 Inst1

T1 default waiting 〈τ , True, ε〉 �
T2 waiting fk 〈req?, True, req?〈V_limit〉〉 �
T3 fk boxIncr 〈τ , True, ε〉 P_limit=V_limit
T4 (fk, ↓) waiting 〈τ , True, ε〉 �
T5 boxIncr jn 〈τ , True, ε〉 �
T6 waiting jn 〈τ , True, ε〉 �
T7 jn waiting 〈τ , True, served++〉 �

Table 1.3: Transition structure for the Dynamic machine

and all their exiting transitions participate in the same join. By De�nition 2, Counting is
therefore a well-formed DSTM speci�cation.

Example 3 (The Dynamic DSTM speci�cation). To exemplify the dynamic instantiation
capabilities of DSTM and asynchronous fork transitions, consider the DSTM speci�cation
Dynamic = 〈M1,M2,X ,C, P〉, where M1 is the Dynamic machine detailed in Figure 1.2
and in Table 1.3 and M2 is Incrementer machine already detailed throughout examples 1
and 2.

Transition T4 is an asynchronous fork, T2 is triggered by the reception of any message
on the channel req and T3 enters boxIncr instantiating an Incrementer machine. T6 is an
entering join transition and is necessary to comply with constraint (iv) of De�nition 2,
since there is an asynchronous fork transition.

Notice that the Dynamic DSTM is able to instantiate an unbounded number of con-
current Incrementer machines.

1.2.2 Data flow

This subsection will de�ne data �ow syntax for DSTMs. It starts by formalizing types,
channels, variables and terms and continues with de�nitions for the syntactic categories
of well-formed triggers ΞP , guards ΦP , actions AP , and parameter-substitution functions
ϒP over a set P of parameters.

Chapter 1 - Dynamic State Machines: a formal modelling language 12

Types Types in DSTMs can either be basic types, compound types or multi-types. The
set of basic types BT = {Int, Chn,BT1, . . . ,BTk} provides an Int type for integers, a Chn
type for channel names and a set of user-de�ned enumeration types BT1, . . . ,BTk . The
domain D(Int) is the set of integers �, D(Chn) = {c1, . . . , ch} is a set of channel names
and for enumeration typesD(BTi) is a set of labels {`i1, . . . , `isi }. D(BT) denotes the union
of each basic type’s domain

⋃
b∈BTD(b). For each basic type it is assumed that a default

value in its domain is provided by means of a default : BT→ D(BT) function.
Compound types are de�ned as tuples of basic types. E.g. the compound type CT =

〈BTj1, . . . ,BTjk 〉 is a tuple of basic types with BTji ∈ BT and its domain is D(CT) ={〈d1, . . . ,dk〉 | di ∈ D(BTji), i ∈ {1, . . . ,k}}. The class of simple types contains both basic
types and compound types.

A multi-type MT is de�ned as composition of simple types: MT = {ST1, . . . , STk}. Its
domain D(MT) is de�ned as the union of each simple type’s domain

⋃k
i=1D(STi). T is the

set of all types.

Channels Each channel name c ∈ D(Chn) is associated with a concrete channel ĉ . The
set of concrete channels is denoted by Ĉ . Channels allow for communication with the
external environment and between internal components via bounded �rst-in �rst-out
bu�ers and the function bd : C → � maps each channel name to the associated bu�er’s
length. Each concrete channel conveys messages of a given type and is associated with
such type by means of a function type : Ĉ → T. The domain of the contents of a concrete
channel ĉ is the set of all sequences of elements inD(type(ĉ)) having length at most bd(c).
In symbols, D(ĉ) = (D(type (ĉ)))bd(c).

For the sake of clarity and readability, the set of decorated basic types BT+, de�ned
as BT+ = BT ∪ {Chn[t] | t ∈ T}, is introduced. By saying that a channel name c has
decorated type Chn[t] it is possible to keep track of the fact that type(ĉ) = t ∈ T. The
domain of a decorated channel type is de�ned as D(Chn[t]) = {c ∈ C | type(ĉ) = t}.

Furthermore, channels are partitioned in internal and external channels. Internal chan-
nels, whose names belong to CI ⊆ C , are used for communications between components
and are restricted to simple types, whereas external ones, whose names belong toCE ⊆ C ,
are used for communications with the external environment and are restricted to having
bounded bu�ers of length 1. As said, internal and external channels form a partition of C
(C = CI ∪CE , CI ∩CE = �).

Variables LetX and P be, respectively, the sets of global variables and parameters. Each
variable and parameter is associated with a decorated basic type by means of a function
type : X ∪ P → BT+. Let v ∈ X ∪ P , its domain is de�ned as the domain of its decorated
basic type. In symbols D(v) = D(type(v)).

Terms The set of terms over a set of variables X and a set of parameters P , denoted by
TrmP , is de�ned as

trmF x | p | d | Chn :: c | Ti :: ` | len(c) | �1trm | trm�2 trm ,

Chapter 1 - Dynamic State Machines: a formal modelling language 13

where x ∈ X , p ∈ P , d ∈ D(Int) = �, c ∈ D(Chn) = C , ` ∈ D(Ti), �1 is an unary opera-
tor from set Op1 (containing for example the classic self-increment and self-decrement
operators ++ and --) and �2 is a binary operator from a set Op2 (containing for example
the classic arithmetic binary operators +,-,*,/). For the sake of simplicity, assume that
both binary and unary operators admit only integer operands. The term len(c) denotes
the current length of the bu�er associated with ĉ .

To preserve term coherence when using unary and binary operators, each term is
assigned a type by a Type function, de�ned as follows:

• Type(v) = type(v) if v ∈ X ∪ P ;

• Type(d) = Type (len(c)) = Int Type(Chn :: c) = Chn, Type(Ti :: `) = Ti ;
• Type (�1trm1) = Type (trm1 �2 trm2) = Int if Type (trm1) = Type (trm2) = Int,

unde�ned otherwise.

A term is well-typed if its Type is de�ned, and non-admissible otherwise. A term is ground
when it contains no occurrences of parameters.

Example 4 (On types, channels, variables and terms). Consider the DSTM model D =
〈M1, . . . ,Mn,X ,C, P〉, with X = {x,y}, C = {c1, c2, c3}, P = {p1,p2}. Let

BTD = {Int, Chn, Colour, Shape}
be the set of basic types in D, with Colour and Shape user-de�ned enumerations with do-
mains D(Colour) = {white, red, green} and D(Shape) = {circle, square} respectively.
ColShape = 〈Colour, Shape〉 is a compound type whose domain D(ColShape) =
D(Colour) × D(Shape). IntOrCS = {Int, ColShape} is a multi-type whose domain
is D(IntOrCS) = D(Int) ∪ D(ColShape). Let type(ĉ1) = Int, type(ĉ2) = ColShape
and type(ĉ3) = IntOrCS, namely the decorated types of c1, c2 and c3 are respectively
Chn[Int], Chn[ColShape] and Chn[IntOrCS]. Let type(p1) = Chn and type(p2) = Int,
type(x) = Int, type(y) = Colour, type(z) = Shape.

The following are well-formed terms: x+y-12, len(c2)++, Chn::c1, Colour::red. On the
contrary, Shape::circle+len(c2) is an example of non-admissible term.

Actions An action is de�ned as a possibly empty sequence of atomic actions. The set
of atomic actions ActP over parameters in P is de�ned as

act F x B trm | γ !〈trm1, . . . , trmkγ 〉 | γ ?〈η1, . . . ,ηkγ 〉 | γ [?]〈η1, . . . ,ηkγ 〉 ,

where x ∈ X , type(x) = Type(trm), γ ∈ P ∪C , Type(γ) = Chn, ηi ∈ X ∪ {_}, trm, trmi ∈
TrmP , type(γ̂) = 〈Type(trm1), . . . , Type(trmkγ)〉. To clarify the de�nition above, an atomic
action can either be

• an assignment x B trm of a value of a term trm to a variable x ∈ X . It is required
that both the term and the variable have the same type. Also note that it is not
possible to assign terms to parameters;

Chapter 1 - Dynamic State Machines: a formal modelling language 14

• the sending of a message over a channel γ , in symbols γ !〈trm1, . . . , trmkγ 〉;
• the reading (and the subsequent removal) of a message from channel γ , in symbols
γ ?〈η1, . . . ,ηkγ 〉. Each element in the η1, . . . ,ηkγ tuple is either a variable to whom
the corresponding element in the message will be assigned, or a don’t care symbol
‘_’ meaning that the corresponding element in the message is to be discarded;

• the reading (without altering the channel’s content) of a message from channel γ ,
in symbols γ [?]〈η1, . . . ,ηkγ 〉. The η1, . . . ,ηkγ tuple has the same meaning as in the
reading with removal action.

The set AP of actions over parameters in P is de�ned as

α F ε | a;α with a ∈ ActP .

Triggers A trigger over the parameters in P is a Boolean expression constructed from
a set of events, namely the presence of signals (messages) on a given channel. The set ΞP

of triggers over P is de�ned as

ξ F τ | γ ? | γ ?T | ξ ∧ ξ | ξ ∨ ξ | ¬ξ ,

where γ ∈ C ∪ P , τ is the always satis�ed trivial trigger, γ ? is satis�ed when there is a
message on channel γ and γ ?T is satis�ed when there is a message of type T on channel
γ (useful with channels having a multi-type type).

Guards A guard over a set of parameters P is a Boolean expression constructed from a
atomic guards by means of Boolean connectives. An atomic guard can be either

• the trivial, always satis�ed, guard True;

• of the form γ [?>] or γ [?⊥], checking that the bu�er associated with channel γ is
respectively full or empty;

• of the form γ
[
?〈trm1, . . . , trmkγ 〉

]
, with trmi ∈ TrmP ∪ {_}, checking for the

component-by-component equivalence of the �rst message stored in the chan-
nel’s bu�er with the given term tuple. As with reading actions, a don’t care symbol
‘_’ in the i-th position is used to specify that the i-th component of the �rst message
is to be ignored in the checking operation.

• a comparison of two terms of the form trm1� trm2, testing for equality or inequality.
When using inequality operators, both terms must have Int Type.

Formally, the set ΦP of all guards over P is de�ned as

ϕ F True | γ [?>] | γ [?⊥] | γ [
?〈trm1, . . . , trmkγ 〉

] | trm1 � trm2 | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ,

where γ ∈ C ∪ P , type(γ) = Chn, type(γ̂) = 〈Type(trm1), . . . , Type(trmkγ)〉, trmi ∈ TrmP ,
� ∈ {≤, ≥,=}.

Chapter 1 - Dynamic State Machines: a formal modelling language 15

Parameter-substitution functions A parameter-substitution function over the set
of parameters P ⊆ P is a partial function subst : P ⇀ TrmP . The set of all parameter-
substitution functions over P is denoted by ϒP .

Example 5 (On actions, triggers and guards). Consider the DSTM Data given in Example
4. x B 1, x B len(c1) + 2, y B Colour::red are all valid assignment actions. c1!〈99〉,
c2!〈y, Shape::square〉, c3!〈x〉, c3!〈y, z〉 are valid channel writing actions. c2?〈y, _〉 is the
action reading (and discarding) the �rst message on channel c2 and assigning the �rst
Colour component of said message (whose type is the compound type ColShape) to they
variable. Note that c2?〈y〉 would not have been a valid action due to type mismatch. c1?〈_〉
has the only side-e�ect of removing the �rst message from channel c1, while c1[?]〈x〉 has
no side-e�ect on c1 and assigns to x the value of the �rst Int message in the channel.

c1? ∨ c2? is the trigger �ring when there is any message on channels c1 or c2. c3?Int
�res only when there is a message of type Int on channel c3. c3?Int ∨ c3?ColShape
would be equivalent to c3?, since multi-type IntOrCS is de�ned as the union of Int and
ColShape.

Guard c1[?⊥] ∧ c2[?>] is satis�ed when c1’s bu�er is empty and c2’s bu�er is full.
x + 1 ≤ 10 is a valid guard, as is Colour::red = y. c2[?〈Colour::green, _〉] is satis�ed when
the �rst message on channel c2 as its �rst component equal to Colour::green.

1.3 DSTM Semantics

The evolution of a DSTM consists in a sequence of instantaneous reactions called steps. A
step is a maximal set of transitions that are triggered by the current system state and by
the state of the external channels.

This section begins with a de�nition of the evaluation context relative to which the
semantics of ground terms, actions, triggers and guards is de�ned.

As already mentioned, DSTM allows for parametric machines whose parameters are
actualized at execution time whenever a parametric machine is instantiated. Parameters do
not hold any value during execution and serve only as placeholders to be substituted with
the actual value determined by the parameter-substitution function. Therefore, DSTM
semantics is de�ned over groundmachines, namely machines in which actions, triggers and
guards contain no parameters. Ground machines are obtained from parametric machines
by applying the appropriate parameter-substitution functions, as detailed in Subsection
1.3.2.

With the previous elements in place, Subsection 1.3.3 provides formal semantics for
DSTM models by means of an LTS (Labelled Transition System) describing its behaviour.

1.3.1 Semantics of transition decorations

De�nition 3 (DSTM evaluation context). An evaluation context θ is a tuple 〈ρ, χ ,η〉
where:

Chapter 1 - Dynamic State Machines: a formal modelling language 16

• ρ : X → D(BT) is the evaluation function for variables;

• χ : CI ∪CE → (D(T))∗ ∪ {⊥} is the evaluation function for channels relative to the
current step. Each channel is associated with a sequence of messages or with ⊥ if
empty;

• η : CE → (D(T) ∪ {⊥}) is the evaluation function for external channels with regard
to the next step. Each channel is associated with a single message (as said in 1.2.2,
external channels must have bu�ers of length 1) or with ⊥ if there is no message.

The set of all evaluation contexts is denoted by Θ.

In order to de�ne the semantics of terms, actions, triggers and guards, with respect to
a certain evaluation context θ , it is necessary to de�ne:

• a term denotation function assigning to each ground term trm its evaluation in the
context θ (in symbols JtrmKθ);

• a satisfaction relation � such that, given a guard (or a trigger) β , θ � β if the guard
(or the trigger) is satis�ed in context θ ;

• an action-application function θ α−→ θ ′ mapping a context θ and a ground action α
to the evaluation context θ ′ resulting from the execution of α on θ .

In the following, a formal de�nition for such elements is provided after brie�y introducing
some new necessary notation. Given a sequence s = (s1, s2, . . . , sn), head(s) denotes its
�rst element s1 and tail(s) = (s2, . . . , sn) denotes the sequence obtained from s by removing
its �rst element. Consider a function f : X → Y and two elements x,y such that x ∈ X
and y ∈ Y . f [x B y] = f ′ denotes a function such that f ′(x) = y and f ′(z) = f (z) for all
z ∈ X , z , x .

De�nition 4 (DSTM ground term denotation function). Given an evaluation context
θ = 〈ρ, χ,η〉, a term denotation function is a function J·Kθ : trmP → D(T) recursively
de�ned as follows:

• JdKθ = d if d ∈ D(Int);
• JChn::cKθ = c if c ∈ D(Chn);
• JTi ::dKθ = d if d ∈ D(Ti);
• JxKθ = ρ(x) if x ∈ X ;

• Jlen(c)Kθ = |χ (c)| if χ (c) , {⊥}, 0 otherwise;

• J�1trmKθ = �1 JtrmKθ ;

• Jtrm1 �2 trm2Kθ = Jtrm1Kθ �2 Jtrm2Kθ .

Chapter 1 - Dynamic State Machines: a formal modelling language 17

with trm, trm1, trm2 being ground terms.

De�nition 5 (DSTM ground trigger satisfaction relation). Given an evaluation context
θ = 〈ρ, χ,η〉, a ground trigger satis�ability relation is de�ned recursively as follows:

• θ � τ ;

• θ � c? if χ (c) , {⊥};
• θ � c?Ti if head(χ (c)) ∈ D(Ti) and either type(ĉ) = Ti if type(ĉ) is a simple type or
Ti ∈ type(ĉ) if type(ĉ) is a multi-type.

• θ � ξ1 ∨ ξ2 if θ � ξ1 or θ � ξ2;

• θ � ξ1 ∧ ξ2 if θ � ξ1 and θ � ξ2;

• θ � ¬ξ if θ 2 ξ ;

with c ∈ C being a channel and ξ , ξ1, ξ2 ground triggers.

De�nition 6 (DSTM ground guard satisfaction relation). Given an evaluation context
θ = 〈ρ, χ,η〉, a ground guard satis�ability relation is de�ned recursively as follows:

• θ � True;

• θ � c[?>] if |χ (c)| = bd(c);
• θ � c[?⊥] if χ (c) = {⊥};
• θ � c[?〈trm1, . . . , trmk〉] if |χ (c)| ≥ 1 and head(c) = 〈t1, . . . , tk〉 and for each
i ∈ {1, . . . ,k} either ti = JtrmiKθ or trmi = _;

• θ � trm1 = trm2 if Type(trm1) = Type(trm2) and Jtrm1Kθ = Jtrm2Kθ ;

• θ � trm1 � trm2 if Type(trm1) = Type(trm2) = Int and Jtrm1Kθ � Jtrm2Kθ ;

• θ � ϕ1 ∨ ϕ2 if θ � ϕ1 or θ � ϕ2;

• θ � ϕ1 ∧ ϕ2 if θ � ϕ1 and θ � ϕ2;

• θ � ¬ϕ if θ 2 ϕ;

with c ∈ C being a channel, � ∈ {≤, ≥}, trm1, . . . , trmk ground terms and ϕ,ϕ1,ϕ2 ground
guards.

With all these elements in place, it is �nally possible to de�ne the action-application
function α−→ as follows.

De�nition 7 (Action application function). Let θ = 〈ρ, χ ,η〉 be an evaluation context
and let α ∈ AP be a well-formed ground action. The action application function is de�ned
recursively on the length of the sequence of atomic actions α as follows:

Chapter 1 - Dynamic State Machines: a formal modelling language 18

• if α = ε , then θ α−→ θ ;

• if α = a;α ′ for some atomic action a, then θ α−→ θ ′′ if θ a−→ θ ′ and θ ′ α
′
→ θ ′′;

• if α = a for some atomic action a, then:

– if a is an assignment action of the form x B trm, then θ
a−→ 〈ρ′, χ,η〉, with

ρ′ = ρ[x B JtrmKθ];
– if a is a read action of the form c[?]〈v1, . . . ,vk〉, then θ a−→ 〈ρ′, χ,η〉, where, for

each x ∈ X , ρ′(x) = (head(c))i if x = vi for some i ∈ {1, . . . ,k} and |χ (c)| > 0,
ρ(x) otherwise;

– if a is a read action of the form c?〈v1, . . . ,vk〉, then θ
a−→ 〈ρ′, χ ′,η〉, with ρ′

de�ned as in the previous case and, for each c′ ∈ C , χ ′(c′) = tail(c) if c′ = c ,
c ∈ CI and |χ (c)| > 0, χ (c′) otherwise;

– if a is a send action of the form c!〈trm1, . . . , trmk〉, then θ a−→ 〈ρ, χ ′,η′〉, where
∗ if c ∈ CI is an internal channel then η′ = η (η in de�ned only on external

channels) and χ ′ = χ if |χ (c)| = bd(c) (i.e. the channel is full), χ [c B
χ (c) · 〈Jtrm1Kθ , . . . , JtrmkKθ 〉] otherwise.

∗ if c ∈ CE is an external channel then χ ′ = χ (because signals sent over
external channels cannot trigger transitions in the same step but only
in the next one) and η′ = η if η(c) , {⊥} (i.e. the channel is full), η[c B
〈Jtrm1Kθ , . . . , JtrmkKθ 〉] otherwise.

1.3.2 Machine instantiation

Let P be a set of parameters, ` ∈ ϒP a ground parameter-substitution function whose
domain is P and whose co-domain is a set of ground terms. Let trm be a term such that
the set Params(trm) of parameters occurring in it is included in P . trm[`] is the ground
term obtained by substituting each occurrence of a parameter p in trm with its denotation
J`(p)Kθ . In a similar way, given an action α ∈ AP (resp. a trigger ξ ∈ ΞP , a guard ϕ ∈ ΦP),
α[`] is de�ned as the action obtained from α (resp. ξ , ϕ) by substituting each term trm in
it with trm[`].

Yet parameter-substitution functions need not to be ground and could substitute
a parameter with a non-ground term. As an example, consider the Counting DSTM
speci�cation detailed in Figure 1.1 and in Table 1.1: the parameter-substitution functions
on transitions T7 and T8 are not ground, as they assign to Incrementer’s parameter P_limit
a non-ground term formed by Counter’s parameter P_to. When an Incrementer machine
is instantiated by a Counter, however, parameter P_to must have been actualized to some
ground term, so the “overall” parameter-substitution is indeed ground. To formalize
this behaviour, it is necessary to extend the application of a ground substitution ` to
a non-necessarily ground substitution `′. Let `′ be a parameter-substitution function
and Params(`′) = {p | p ∈ Params(`′(p′)),p′ ∈ P} be the set of parameters occurring in

Chapter 1 - Dynamic State Machines: a formal modelling language 19

the image of `′. Assume Params(`′) ⊆ P . Then `′[`] is a ground parameter-substitution
function such that `′[`](p′) = `′(p′)[`]. Continuing with the previous example, let ` =
{(P_to, 100)} be the parameter-substitution function associated with transition T2 (i.e.
Inst1(T2) = `) and let `′ = {(P_limit, P_to)} be the parameter-substitution function
associated with transition T7. Params(`′) = {P_to}, while ` is ground and Params(`) = �.
`′[`] is a ground substitution function as `′[`](P_limit) = `′(P_limit)[`] = P_to[`] =
J`(P_to)Kθ = 100.

At last, it is now possible to de�ne the ground instantiation M[`] of a parametric
machine M with regard to the parameter-substitution function ` as the machine obtained
from M by substituting each action α , guard ϕ, trigger ξ and parameter-substitution
function `′ with the corresponding ground objects α[`], ϕ[`], ξ [`] and `′[`].

1.3.3 Semantics by means of a Labelled Transition System

In this subsection formal semantics for DSTM is provided by de�ning a Labelled Transition
System (LTS). An LTS, often used to describe the potential behaviour of systems, is a
4-ple L = 〈S, Σ,∆, S0〉, where:

• S is a non-empty set of states;

• Σ is a non-empty alphabet of labels;

• ∆ is a transition relation, ∆ ⊆ S × Σ × S ;

• S0 ⊆ S is a set of initial states.

The main intuition behind this formalization is that each state s ∈ S of the LTS model
represents a complete con�guration (state) of the DSTM in a given instant, including the
current control locations and the current evaluation context, while a step in the DSTM
will correspond to a suitably-de�ned series of LTS transitions, each capturing one DSTM
transition or more.

Let us begin with the problem of representing the complete con�guration of a DSTM
in a state of the LTS. To represent the current control locations it is necessary to store
information about the current state each currently-active process (ground machine) is in,
and the information about the activating processes (calling ground machines). Since a
machine may instantiate multiple machines, the information about the current control
locations can be represented with a tree. Each vertex of such tree, called the control
tree, is labelled with either a machine, a box or a node. Accordingly to the intuition that
pseudo-nodes represent only transient non-stable control points, control tree vertices
cannot be labelled by pseudo-nodes. The root of a control tree, labelled by a machine,
represents the main (initial) process, having the highest level in the hierarchy. Leaves
represent control states in which each currently-active process is in and are labelled by
nodes. Internal vertices represent the call hierarchy and cannot be labelled by nodes.
Whenever a vertex is labelled by a machine M , it either is the root or is the child of a node

Chapter 1 - Dynamic State Machines: a formal modelling language 20

labelled by a box instantiating M . If a node is labelled by either a box or a node, then its
parent is labelled by the machine to which the box or the node belong.

A labelled tree T is a pair 〈Vx, λ〉 where Vx ⊆ �∗ is a pre�x-closed set of vertices
(i.e. if v ∈ Vx and v = v′ · v , then v′ ∈ Vx), with the empty sequence denoted by ε , and
λ : Vx → Γ is a labelling function mapping each vertex to some label set Γ. Each vertex
(string) in a similarly-de�ned tree encodes a path from the root of the control tree to
that vertex itself: ε encodes the empty path, so the root, i identi�es the path to the i-th
child of the root, i · j encodes the path to the j-th child of the i-th child of the root, and
so on. For the sake of brevity, given a DSTM D = 〈M1, . . . ,Mn,X ,C, P〉, let N (D) denote
the containing of all nodes of each machine, namely

⋃n
i=1 Ni . Similarly, for boxes and

machines, let Bx(D) = ⋃n
i=1 Bxi and M(D) = ⋃n

i=1{Mi[`] | ` ∈ ϒPi }.
De�nition 8 (Control tree over a DSTM). A control tree over the DSTM D = 〈M1, . . . ,Mn,
X ,C, P〉 is a labelled tree 〈Vxct, λ〉 where Vxct is a set of vertices such that each vertex is
parent of at most one leaf and λ : Vxct → N (D) ∪ Bx(D) ∪M(D) is a labelling function
such that

• λ(ε) = M1;

• n ∈ Leaves(Vxct) i� λ(n) ∈ N (D);
• if n = n′ · i with i ∈ � (i.e. n is the i-th child of n′), then

(i) if n ∈ Leaves(Vxct), then λ(n) ∈ Nj and λ(n′) ∈ Mj for some j ∈ {1, . . . ,n};
(ii) if n < Leaves(Vxct) and λ(n) = bx ∈ Bx j for some j ∈ {1, . . . ,n} then λ(n′) ∈

Mj ;
(iii) if n < Leaves(Vxct) and λ(n) = Mj for some j ∈ {1, . . . ,n} then λ(n′) = bx ∈

Bxk for some k ∈ {1, . . . ,n} and j ∈ Yk(bx);
In De�nition 8, constraint (i) and (ii) require for each node-labelled or box-labelled

vertex to be child of a vertex labelled with the machine to which the node belongs,
constraint (iii) requires for each machine-labelled node to be the child of a vertex labelled
with a box instantiating the machine.

Example 6 (Control trees for the Sample DSTM). Consider the Sample DSTM depicted
in Figure 1.1 and detailed in Table 1.1 and throughout examples 1, 2. Some of the Sample
DSTM’s possible control trees are represented in Figure 1.3. In the �gure, each machine-
labelled vertex is depicted as a diamond (�), each box-labelled vertex as a square, and each
node-labelled vertex as a circle (crossed-out if it is labelled by a �nal node). On the right
of each node n, the value of λ(n) is shown.

Tree (a) encodes the control state in which only the Main machine is running and is
in the idle1 state.

Tree (b) encodes the control state in which the Main machine has entered the box
counterBox, thus instantiating an instance of the Counter machine which is in its state
idle2.

Chapter 1 - Dynamic State Machines: a formal modelling language 21

Main

idle1

Main

counterBox

Counter

idle2

Main

counterBox

Counter

boxIncr1 boxIncr2

Incrementer Incrementer

finished doubleIncr

(c)(b)(a)

Figure 1.3: Control trees of the Sample DSTM

Tree (c) encodes the control state in which the Counter machine, instantiated by
Main by entering the box counterBox, in turn instantiated two Incrementer machines by
entering the boxes boxIncr1 and boxIncr2, with the Incrementer machines being in the
finished and doubleIncr state respectively.

De�nition 9 (DSTM state). The state of a DSTM D is a tuple 〈CT , Fr, θ〉 where

• CT = 〈Vxct, λ〉 is a control tree over D, describing the current state of the control
�ow;

• Fr ⊆ Vxct is the frontier of CT , containing those vertices that can be source of a
transition in the current step;

• θ = 〈ρ, χ,η〉 is an evaluation context.

For the sake of clarity, the ground guard/trigger satisfaction relation can be extended to
states as follows: given a state s = 〈CT , Fr, θ〉 and a ground guard ϕ (resp. ground trigger
ξ), s � ϕ (resp. s � ξ) if θ � ϕ (resp. θ � ξ). For each implicit transition t ∈ Ti of a ground
machine Mi , with Srci(t) = en ∈ Eni and Trgi(t) = n ∈ N i , we de�ne explicitMi

(en) = n.
The set of initial states S0 of the LTS contains states s0 = 〈CT 0, Fr0, θ0〉, where

• CT 0 = 〈Vx0, λ0〉, with Vx0 = {ε, 1}, λ0(ε) = M1, λ0(ε) = explicitM1
(df 1);

• Fr0 = Vx0;

• the initial evaluation context θ0 = 〈ρ0, χ0,η0〉 is such that:

– the variable evaluation function ρ0 assigns to each variable the default value
for its type, i.e. ρ0(x) = default(type(x)) for each x ∈ X ;

– χ0 assigns⊥ to each internal channel and a non-deterministically chosen value
(including ⊥) to each external channel;

– η0 assigns ⊥ to each external channel.

Chapter 1 - Dynamic State Machines: a formal modelling language 22

Notice that control tree (a) in Figure 1.3 is a valid initial control tree for the Sample DSTM.
With the states S and the initial states S0 de�ned, what remains is to de�ne transitions.

To do so, it is necessary to generalize the notion of DSTM transition by introducing
compound transitions. Given a machine Mi , a compound transition is a pair of sequences
of transitions ct = 〈〈t1, . . . , tj〉, 〈t ′1, . . . , t ′k〉〉 with {t1, . . . , tj, t ′1, . . . , t ′k} ∈ Ti . t1, . . . , tj are
called incoming transitions and t ′1, . . . , t

′
k

are called outgoing transitions. DSTM transitions
may have source or target in pseudo-nodes which, as said, correspond to transient,
unstable control points. Therefore, a transition involving pseudo-nodes may be seen as
part of a super-transition connecting proper control points. For example, a fork (resp. a
join) can be seen as a super-transition connecting one source with multiple targets (resp.
multiple sources with one target). Compound transitions are able to capture this intuition
and allow us to consider only transitions having source(s) and target(s) in proper control
points.

A compound transition ct is decorated by a trigger ξ (ct), a guard ϕ(ct) and by two
sets of actions αpre(ct) and αpost(ct), collecting respectively the actions of incoming and
outgoing transitions. There exist three types of compound transitions:
simple having the form ct = 〈〈t〉, 〈t〉〉, with t being a non-implicit transition such that

neither its source or its target are fork or join nodes.

fork having the form ct = 〈〈t〉, 〈t ′1, . . . , t ′k〉〉 and such that there exists a fork pseudo-node
fk ∈ Fki and Trgi(t) = fk and {t ′1, . . . , t ′k} is the set of all the transitions having as
source either fk or (fk, ↓). In this case, ξ (ct) = ξ (t) and ϕ(ct) = ϕ(t) (all transitions
exiting from a fork must have the trivial trigger τ , as per table 1.2), αpre(ct) = α(t)
and αpost(ct) =∏k

`=1 α(t ′`).
join having the form ct = 〈〈t1, . . . , tj〉, 〈t ′〉〉 and such that there exists a join pseudo-node

jn ∈ Jni and Trgi(t ′) = jn and {t1, . . . , tj} is the set of all the transitions having
as target either jn or (jn, ⊗). In this case, ξ (ct) = ∧j

i=1 ξ (ti) and ϕ(ct) = ∧j
i=1 ϕ(ti),

αpre(ct) = � (entering join actions are not allowed to contain non-empty actions)
and αpost(ct) = α(t ′). Moreover, if a transition t ∈ {t1, . . . , tj} has as target (jn, ⊗),
then the whole compound transition is a preemptive join and ⊗(ct) = Srci(t).

Semantics of transitions require to formalize: (i) when a compound transition is
enabled in a given state s ∈ S ; (ii) what changes are induced on the starting state by the
execution of a compound transition.

Let us start by de�ning the notion of enabled-ness of a transition w.r.t. a state s ∈
S . Such enabled-ness depends only on the form of the source vertex of the transition.
Formally, given a state s = 〈CT = 〈Vx, λ〉, Fr, θ〉, a transition t and a vertex n ∈ Vx, a
predicate Enabled(t,n), meaning that t is enabled in vertex n, is introduced and de�ned as
follows: s � Enabled(t,n) i� the subtree of CT rooted in n is contained within the frontier
Fr and one of the following conditions holds, depending on the type of t :
basic transitions (namely transitions whose source is a node, e.g. internal, entering

join, entering fork, call transitions, etc.) Srci(t) ∈ Ni , n ∈ Leaves(Vx), λ(n) = Srci(t),
s � ξ (t) and s � ϕ(t);

Chapter 1 - Dynamic State Machines: a formal modelling language 23

return by interrupt Srci(t) ∈ Bxi , ξ (t) , τ , λ(n) = Srci(t), s � ξ (t) and s � ϕ(t);
return by default Srci(t) ∈ Bxi , ξ (t) = τ , λ(n) = Srci(t), s � ϕ(t) and λ(n · j · 1) ∈ Ex(D)

for all n · j · 1 ∈ Vx (i.e. for each j-th machine instantiated by the box λ(n), its child
is labelled with an exit state);

return by exiting Srci(t) = (bx, ex), with bx ∈ Bxi and ex ∈ ExYi (bx), λ(n) = bx and
n · 1 · 1 ∈ Vx, with λ(n · 1 · 1) = ex (notice that return by exiting transitions are only
allowed from boxes instantiating exactly one machine and must have trivial trigger
and guard, so it is not necessary to require that they are satis�ed).

The notion of enabled-ness is extended to compound transitions as follows. Given a state
s = 〈CT = 〈Vx, λ〉, Fr, θ〉, a set of k sibling vertices N = {n · i1, . . . ,n · ij} ⊂ Vx and a
compound transition ct = 〈〈t1, . . . , tj〉, 〈t ′1, . . . , t ′k〉〉, s � Enabled(ct,N) i�:

(i) λ(n) = Mi ;

(ii) for all n ∈ N and compound transition ct ′, if N ′ ⊂ Vx, n′ ∈ N ′ and n′ ≺ n
(with n′ , n and ≺ being the canonical pre�x relation de�ned on strings), then
s 2 Enabled(ct ′,N ′);

(iii) if ct is not a preemptive join, then for all ` ∈ {1, . . . , j} s � Enabled(t`,n · i`);
(iv) if ct is a preemptive join, then for all ` ∈ {1, . . . , j}

• if t` ∈ ⊗(ct), then s � Enabled(t`,n · i`);
• if Srci(t`) = (bx, ex), then λ(n · i`) = bx, otherwise λ(n · i`) = Srci(t`).

Condition (i) requires that the parent vertex n of the vertices in N is labelled with the
same machine to which ct belongs. Condition (ii) requires that no ancestor n′ of the nodes
in N is involved in an enabled (and potentially interrupting) compound transition. This
condition guarantees that an interrupting transition enabled in some internal node of the
tree has higher priority over all transitions enabled in nodes of its subtree. Condition
(iii) requires that, when ct is not a preemptive join, all of the incoming transitions are
enabled. Condition (iv) deals with preemptive joins and only requires that the incoming
interrupting transition (⊗(ct)) is enabled and that all other incoming transitions have
properly-labelled sources.

The execution of a compound transition has e�ects on the structure of the control
tree and on the evaluation context of the state from which it is taken. Given a state s and
a compound transition ct = 〈〈t1, . . . , tj〉, 〈t ′1, . . . , t ′k〉〉 belonging to some machine Mi , in
order to account for the new subtrees to be added to the current control tree, a sequence
of trees Trees(ct, s) = {CT1, . . . ,CTk} is de�ned as follows. For each t ′m, ` ∈ {1, . . . ,k}

• if Trgi(t ′m) = n ∈ Ni , then the control tree CTm = 〈Vxm, λm〉 with Vxm = {ε} and
λm(ε) = n;

Chapter 1 - Dynamic State Machines: a formal modelling language 24

• if Trgi(t ′m) = (bx, en), with bx ∈ Bxi and en ∈ EnYi (bx), then the control tree CTm =
〈Vxm, λm〉 with Vxm = {ε, 1, 1 · 1} and λm(ε) = bx, λm(1) = Mh[`], with Yi(bx) = h
and ` = Insti(t ′m), and λm(1 · 1) = explicitMh

(en);
• if Trgi(t ′m) = bx, with bx ∈ Bxi , then the control tree CTm = 〈Vxm, λm〉 with
Vxm = {ε}∪

⋃|Yi (bx)|
z=1 ({z} ∪ {z · 1}) and, for all 1 ≤ z ≤ |Yi(bx)|, λm(ε) = bx, λm(z) =

Mhz [`z], λm(z · 1) = explicitMhz
(df 1) with hz = (Yi(bx))z and `z = (Insti(t ′m))z .

In order to describe the evolution of a control tree induced by the �ring of a compound
transition it is necessary to introduce suitable tree transformation operations. Given two
labelled trees T = 〈Vx, λ〉, T ′ = 〈Vx′, λ′〉 and a node n ∈ Vx, the operation T ◦n·i T ′
produces the tree T ′′ = 〈Vx′′, λ′′〉 obtained from T by replacing the (possibly empty)
subtree rooted in n · i with T ′. Formally, T ′′ = T ◦n·i T ′ i� for all vertices n′′ ∈ Vx′′, one
of the following is satis�ed:

• n′′ ∈ Vx, n · i ⊀ n′′ and λ′′(n′′) = λ(n′′) (n′′ was not part of the subtree of T rooted
in n · i and is not a�ected by any modi�cation);

• n′′ = n · i · n′ for some n′ ∈ Vx′ and λ′′(n′′) = λ′(n′) (n′′ was part of T ′, is now a
descendant of n · i and maintains its original labelling).

Given a labelled tree T = 〈Vx, λ〉 and a set of nodes N ⊆ Vx, the operator Remove(T ,N)
produces the tree T ′ = 〈Vx′, λ′〉 obtained from T by removing all the nodes belonging to
a subtree rooted in one of the nodes in N and by leaving the labelling unchanged for the
remaining nodes. Formally, n′ ∈ Vx′ i� n′ ∈ Vx and n � n′ for all n ∈ N (i.e. a vertex is in
T ′ i� it was in T and is not a descendant of any node in N) and λ′ = λ�Vx ′ , where λ�Vx ′
denotes the restriction of λ to Vx′.

The Update operator, taking as arguments a tree T , a node n in T and a possibly
empty sequence of trees T1, . . . ,Tk , is de�ned inductively on the length of the sequence
as follows:

• Update(T ,n, ε) = T ;

• Update(T ,n, 〈T1, . . . ,Tn〉) = Update ((T ◦n·i T1),n, 〈T2, . . . ,Tn〉), with i being the
smallest number such that n · i < T .

For a transition t ∈ Ti , αimpl(t) is the set of all implicit actions associated with implicit
transitions triggered by the execution of t . If t is a call by default transition, αimpl(t) is
the set of all actions associated with the implicit transitions having as source the default
entering node for each machine instantiated by the box t is entering. In the same way, if t
is a call by entering having as target (bx, en), αimpl(t) is the action decorating the implicit
transition from en. Formally,

αimpl(t) =

{
α(t ′)

���Srcj(t ′) = df Mj
and j ∈ Yi(b)

}
if Trgi(t) = b ∈ Bxi ;

{α(t ′)} if Trgi(t) = (b, en), j = Yi(b)
and Srcj(t ′) = en;

� otherwise.

Chapter 1 - Dynamic State Machines: a formal modelling language 25

Finally, it is possible to provide the semantics of a compound transitions ct = 〈〈t1, . . . , tj〉,
〈t ′1, . . . , t ′k〉〉 w.r.t a certain state s = 〈T , Fr, θ〉. Assuming that ct is enabled in s , i.e. there
is a set N of j siblings in Fr such that s � Enabled(ct,N) and these vertices in N are the
sources of the incoming transitions, the successor state s′ resulting from the execution of
ct from s is obtained as follows:

• the control state is obtained by removing from T the subtrees rooted in nodes in
N (Remove(T ,N)) and then by adding the control trees in Trees(ct, s) as additional
children of the parent n of the siblings in N (Update(T ,n, Trees(ct, s))).

• as regards data-�ow modi�cations, the new evaluation context θ ′ is obtained by
applying incoming actions, then outgoing actions and then the possible implicit
actions triggered by the outgoing transitions. Notice that incoming transitions,
as well as outgoing and implicit transitions, may be executed in any possible
order since they are performed by concurrent processes. So, every permutation of
incoming actions followed by any permutation of outgoing actions followed by any
permutation of implicit actions is a possible outcome for the execution of ct .

Formally, the transition relation is de�ned as follows.

De�nition 10 (DSTM semantics - transition relation). Given a state s = 〈T , Fr, θ〉 and a
compound transition belonging to some machine Mi ,

〈T , Fr, θ〉 ct→ 〈T ′, Fr′, θ ′〉

i� there exists a vertex n and a set N ⊆ Fr of children of n such that

(i) s � Enabled(ct,N);
(ii) T ′ = Update (Remove(T ,N),n, Trees(ct, s));

(iii) Fr′ = Fr \{n′ ∈ Fr | n � n′ for some n ∈ N };

(iv) θ α1;α2−−−−→ θ ′, where α1 = αpre(ct) and

• if ct is a compound fork transition of the form 〈〈t〉, 〈t ′1, . . . , t ′k〉〉 then α2 is a
permutation of the actions in

k⋃
j=1

({
α(tj)

} ∪ {
α[`j]

�� αimpl(t ′j) = {α } and `j = Insti(t ′j)
})

• if ct is a join compound transition of the form 〈〈t1, . . . , tj〉, 〈t〉〉 or a simple
transition of the form 〈〈t〉, 〈t〉〉, then α2 = α ;α where α is any permutation of
the transitions in αpost(ct) and α is de�ned as follows:

Chapter 1 - Dynamic State Machines: a formal modelling language 26

– if t is a call by default transition entering a box b, then α is a permutation
of the set

|Yi (b)|⋃
j=1

{
α

(
t j
) [
`j
] ���� α (

t j
) ∈ αimpl(t), Srcz

(
t j
)
= df Mz

,
z = (Yi(b))j and `j = (Insti(t))j

}
;

– if t is a call by entering transition entering a box b and specifying entering
state en, then α = α

(
t j
) [
`j
]
, with α

(
t j
)
= αimpl(t), Srcz

(
t j
)
= en and

`j = (Insti(t));
– α = ϵ , otherwise.

When no more “internal” transitions can be performed (depending on the current
control tree, frontier and evaluation context), the LTS performs a transition

〈T , Fr, θ〉 next−−−→ 〈T , Fr′, θ ′〉

corresponding to the completion of the current step and the initialization of the next step,
where T = 〈Vx, λ〉, Fr′ = Vx, θ = 〈ρ, χ ,η〉 e θ ′ = 〈ρ, χ ′,�〉 such that

• for all c ∈ CI , χ ′(c) = χ (c);
• for all c ∈ CE , χ ′(c) ∈ {⊥} ∪ D(c) and if η(c) , ⊥ then χ ′(c) = 〈η(c)〉.

During this next-step initialization transition the context tree remains unchanged, the
frontier is changed to all vertices in the context tree, variable and internal channel
evaluation do not change and the content of the external channel c is either set to match
any non-empty message speci�ed by the η function or non-deterministically initialized if
η(c) = ⊥.

Example 7 (Steps in a Dynamic DSTM computation). Consider the Dynamic DSTM
detailed in Figure 1.2 and in Table 1.3. Figure 1.4 shows steps in one of its possible
computations, as elaborated below. In its initial state s0, the DSTM has a control state
encoded by tree (a). Suppose that the external environment generates a message on the
external req channel, thus enabling transition T2. By the de�nition of enabled-ness for
compound transitions, the compound asynchronous fork ct1 = 〈〈T2〉, 〈T3, T4〉〉 is therefore
enabled in the waiting-labelled node. No other compound transitions are enabled, so the
�rst step consists only in ct1 and in the re-initialization transition next. When ct1 �res, the
node 1 (labelled by waiting) is removed from control tree (a) by calling Remove((a), {1})
and subsequently the new trees in Trees(ct1, s0) are added to the resulting control tree
by calling Update(Remove((a), {1}), ε, Trees(ct1, s0)) and obtaining tree (b). Suppose that
another message is available on the external channel req. Compound transition ct1 is
again enabled in node 1. This time also T14 from the Incrementer machine is enabled, and
so is the simple compound transition ct2 = 〈〈T14〉, 〈T14〉〉. The second step consists of two
compound transitions ct1 and ct2, which may be executed in any order, followed as always
by the step initialization transition. Execution of step 2 results in the control tree (c),

Chapter 1 - Dynamic State Machines: a formal modelling language 27

Step 1 Step 2

ct1
ct1

ct2

ct1
ct1

Dynamic

waiting

Dynamic

waiting boxIncr

Incrementer

simpleIncr

Dynamic

boxIncrwaiting

Increm.

simpleIncr

boxIncr

Increm.

simpleIncr

(a) (b) (c)

Step j Step j + 1

ct2 ct2 ct2 ct3

Dynamic

boxIncrwaiting

Increm.

simpleIncr

boxIncr

Increm.

simpleIncr

Dynamic

boxIncrwaiting

Increm.

simpleIncr

boxIncr

Increm.

simpleIncr

Dynamic

boxIncrwaiting

Increm.

simpleIncr

boxIncr

Increm.

finished

(d) (e) (f)

Step j + 2
Step j + 3 Step j + 4

ct2

ct4
ct4

ct3

ct4
ct4

Dynamic

boxIncrwaiting

Increm.

simpleIncr

boxIncr

Increm.

finished

Dynamic

boxIncr waiting

Incrementer

simpleIncr

Dynamic

boxIncr waiting

Incrementer

finished

Dynamic

waiting

(f) (g) (h) (i)

Figure 1.4: Steps in a Dynamic DSTM computation

Chapter 1 - Dynamic State Machines: a formal modelling language 28

where two instances of the Incrementer machine are executing concurrently along with
the Dynamic machine, which is waiting for new requests in its waiting state. From now
on, no more requests arrive on the external channel and the two concurrent Incrementer
machines continue incrementing the global variable x. The system evolves by performing
steps like step j, consisting in two compound transitions ct2 �ring from the simpleIncr
states in the two concurrent Incrementers. Eventually, x will be incremented enough to be
greater or equal than the P_limit parameter in one of the Incrementers. In the scenario
depicted in Figure 1.3, this happens for the second machine after the execution of step j.
Therefore, in step j + 1, transition T14 is no longer enabled but transition T16 is enabled in
node 3 · 1 · 1. Step j + 1 consists in a ct2 transition from 2 · 1 · 1 and in a ct3 = 〈〈T16〉, 〈T16〉〉
transition from 3 · 1 · 1 and results in control tree (f). In (f), the compound join transition
ct4 = 〈〈T5, T6〉, 〈T7〉〉 is enabled in nodes {1, 3}, as well as the ct2 transition is enabled in
{2 · 1 · 1}. Hence, step j + 2 consists in the compound transitions ct4,ct2, again executed
in any possible order, and results in control tree (g). In (g) x is �nally greater or equal
than the P_limit parameter passed to the �rst Incrementer and ct3 is the only enabled
compound transition for step j + 3. In step j + 4, only ct4 is enabled and its execution
results in tree (i).

–2–

Automatic test case generation from

Dynamic State Machines

Contents: 2.1 The Spin model checker and Promela: a brief introduction. 2.1.1 The Spin model
checker – 2.1.2 The Promela speci�cation language. 2.2 Deriving Promela models from DSTMs.

2.2.1 An overview of the translation process. 2.3 Flattening the DSTM into ordinary state machines.

2.4 Promela encoding for the �at model. 2.4.1 Translation of data-�ow elements – 2.4.2 An overview
of the Promela speci�cation – 2.4.3 Mapping a �at DSTM to a Promela speci�cation – 2.4.4 Enforcing the
steps semantics – 2.4.5 Mapping a DSTM model to a Promela speci�cation. 2.5 Test case generation.

The DSTMs formalism, as described in detail in the previous chapter, is very expressive
and well-suited to model complex systems in an insightful fashion. Because of these
qualities, the formalism can be used in di�erent phases of the development lifecycle
ranging from design to veri�cation and validation.

When dealing with veri�cation and validation, it is possible to “translate” a DSTM
model into a lower-level formalism – such as the speci�cation language of a model checker
– in order to enable property veri�cation and/or test case generation. This approach has
already been used with similar and less expressive formalisms such as statecharts [14, 15]
and UML state machines [16].

This chapter describes an automatable process to translate a DSTM model into a
Promela speci�cation and a way to use such speci�cation with the Spin model checker to
derive test cases. After a brief introduction to the Spin model checker and its speci�cation
language Promela in Section 2.1, sections 2.2, 2.3, and 2.4 describe the translation process.
Section 2.5 shows how to use the Promela speci�cation to derive test cases covering
speci�c transitions or nodes.

29

Chapter 2 - Automatic test case generation from Dynamic State Machines 30

Promela
Model

Promela
Parser

Random/Interactive
Simulation

Syntax Error
Reports

Verifier
generator

Model-specific
ANSI C code

Executable
Verifier

Figure 2.1: The structure of Spin [19]

2.1 The Spin model checker and Promela: a brief in-

troduction

An exhaustive description of a complex tool like the Spin model checker and its rather
rich veri�cation language Promela is beyond the scope of this thesis work. This section
brie�y presents the Spin model checker and the Promela constructs used in the proposed
translation in Section 2.2.

2.1.1 The Spin model checker

Spin [17] (Simple Promela INterpreter) is a veri�cation tool for distributed and concurrent
systems. It accepts design speci�cations written in the language Promela, and is able
to execute them in simulation mode and produce an optimized on-the-�y veri�cation
program. Once the veri�cation program, written in ANSI C, is compiled, it is used to
perform the veri�cation itself against correctness claims. In Spin, correctness claims
are used to formalize undesired system behaviour. If any counterexample satisfying the
correctness claims is detected, the veri�er produces a trail of the run satisfying the claim
(and exhibiting undesired behaviour). This trail can be fed back to Spin and inspected in
detail in simulation mode to determine the cause of the violation [18]. The structure of
Spin is shown in Figure 2.1.

Under the hood, as described by Holzmann in [19], Spin translates each concurrent
process in the design speci�cation to a �nite automaton, then computes the asynchronous
interleaving product of said automata to obtain an automaton representing the global state
of the system. This interleaving product is often referred to as the state space of the system
or as the global reachability graph. To perform veri�cation, Spin proceeds as described
by Vardi and Wolper in [20] and builds a Büchi automaton for the correctness claim –
which typically is the negation of the property one wants to ensure –, then computes a
synchronous product of the claim and the automaton representing the system obtaining –
again – a Büchi automaton. If the language accepted by this Büchi automaton is empty,
then there is no system run satisfying the correctness claim – i.e. a violation of the property
–, otherwise a run belonging to said intersection is returned as a counterexample.

Chapter 2 - Automatic test case generation from Dynamic State Machines 31

Type Domain

bit {0, 1}
bool {true, false}
byte {0, . . . , 255}
chan {1, . . . , 255}
mtype {1, . . . , 255}
pid {0, . . . , 255}
short {215, . . . , 215 − 1}
int {231, . . . , 231 − 1}
unsigned {0, . . . , 2n − 1}

Table 2.1: Basic data types in Promela

2.1.2 The Promela specification language

Promela (PROcess/PROtocol MEta LAnguage), the speci�cation language for Spin, is
designed to be an intuitive, program-like notation for specifying design choices unam-
biguously, without focusing on implementation details [19]. A Promela speci�cation is a
non-empty set of processes operating on data objects and communicating over message
channels, with at least one initial process (namely a process required to be active in the
initial system state). Each running process is an instantiation of a proctype, whose
body contains data declarations and statements. Proctypes have global scope, while
data objects can either have global scope, if declared outside of a proctype’s body, or
process-local scope otherwise.

Since there is no general decision procedure for unbounded systems, Promela is
designed in such a way that every model which can be speci�ed is necessarily bounded,
i.e. has a �nite number of distinct states and behaviours [19, 18]. This guarantees that the
state space can always be generated and explored in �nite time (unfortunately, this does
not mean that doing so is always feasible!).

Promela borrows many of its notation from the C programming language, including,
for instance, the syntax for Boolean and arithmetic operators, for assignment (a single
equals) and equality (a double equals), for variable and parameter declarations, variable
initialization and comments, and the use of curly braces to indicate the beginning and
end of program blocks [18].

In what follows, the main elements in Promela are brie�y presented.

Datatypes and channels

In Promela there are only two levels of scope for data objects: global and process local. As
previously said, data objects declared inside a proctype’s body are local to that process,
while the others are global and visible in every process. Since there are only two levels
of scope, there is no way to restrict the scope of a global variable to a given subset of
processes and, similarly, it is not possible to restrict the scope of a local variable to a given

Chapter 2 - Automatic test case generation from Dynamic State Machines 32

Listing 2.1 Variables and channels declarations
1: bit foo , bar =1;
2: mtype ={ white ,red ,green }; /* mtype declaration */
3: mtype ={blue ,pink }; /* mtype declaration */
4: mtype colour = red;
5:
6: typedef square { /* user - defined type */
7: mtype colour [4]; /* array of 4 mtypes */
8: int sideSize ;
9: }

10: square sqArray [3]; /* 3 squares array */
11: sqArray [0]. colour [3] = red;
12:
13: chan a,b,c; /* channel declaration */
14: chan d = [2] of { mtype }; /* channel declaration and init. */
15: chan e = [32] of {mtype ,bit }; /* messages with multiple fields */

block inside a process. All objects must be properly declared before being referenced. The
basic data types in Promela are summarized in Table 2.1.

Variables of type mtype can hold symbolic values that must be introduced with one or
more mtype declarations. Zero-indexed arrays can be declared as in the C language and
the number of elements must be speci�ed at declaration time with an integer constant. An
array of N elements of type t is declared as t name[N]. User-de�ned datatypes, whose
declaration via the typedef construct is required to have global scope, are also supported.
Listing 2.1 shows some examples of variable and type declarations and assignments.
Channels are declared (globally or locally) using the keyword chan and must be initialized
before usage. A channel initialization speci�es its length in square brackets as well as the
type of the conveyed messages. Messages may also contain multiple �elds, in which case
a type for each �eld is speci�ed in a bracket-enclosed comma-separated list as shown in
Listing 2.1. By default, channels store messages in �rst-in-�rst-out order. In Listing 2.1
two bit variables foo and bar are declared, with the latter being initialized to 1. In lines
2 and 3, two mtype declarations de�ne �ve symbolic names for colours. Notice that those
two declarations are in fact equivalent to a single declaration listing all �ve symbolic
names. In line 4, the variable colour of type mtype is declared and initialized to red.
Starting from line 6, the user-de�ned datatype square is declared, containing a colour
�eld being an array of 4 mtypes and an int �eld named sideSize. In line 10 an array of
3 squares named sqArray is declared and line 11 sets a value for the last element in the
colour �eld of the �rst square in the array.

Processes

In Promela, processes are declared with the proctype construct as shown in Listing 2.2.
The keyword active can be pre�xed to any proctype declaration, as in process B in the
example, to de�ne a set of processes that are required to be running in the initial system
state. Every active process is associated with a unique identi�er number, which is stored

Chapter 2 - Automatic test case generation from Dynamic State Machines 33

Listing 2.2 Process declarations
1: proctype A(byte p){
2: printf ("Hello , I’m process A and param = %d\n", p)
3: }
4:
5: active proctype B(){
6: printf ("Hello , I’m process B and my pid is %d!\n",_pid)
7: }
8:
9: init {

10: run A(1); run A(2);
11: }

in the local, read-only variable _pid. The init keyword is used to declare an initial
process. Such initial process cannot be parametric and can be instantiated only once. A
process can instantiate new processes via the unary operator run, taking as argument a
previously-declared proctype’s name and a possibly empty list of parameters matching
the one in the proctype declaration, as shown in the init process in the example above.
printf, as in the C programming language, is used for printing text during simulation
runs. All the active processes execute concurrently in interleaving, i.e. only a single
process can perform a computation step in a given instant of time.

Notice that, since Promela de�nes only �nite state systems, the number of active
processes is limited to 255.

Statements and expressions

In the previous examples in listings 2.1 and 2.2, basic statements like assignments and print
statements have already been introduced. Other basic statements in Promela are send
and receive statements over channels. Send statements are used to send a message over
a channel and have the form chName!args. By default, a send statement is executable
only if the channel is not full, but Spin also supports an alternative mechanism overriding
the default behaviour and making send statements always executable. When using
this alternative behaviour, messages sent to a full channel are lost. Receive statements
are used to retrieve the �rst message in a channel and have the form chName?args
or chName?<args>. A receive statement is executable i� the �rst message in channel
chName matches the pattern in args. If a variable appears in the argument list, then
the corresponding value of the message is copied into the variable when the message is
received. If no square brackets were used, the �rst message is removed from the channel,
otherwise there is no side-e�ect on the channel.

Expressions include, besides arithmetic and Boolean expression which are very similar
to the ones in the C language, polling expressions over channels and run expression
(an example of which is in Listing 2.2). Channel polling expressions are side-e�ect-free
tests for the executability of receive statements and have the form chName?[args]. A
channel poll evaluates to true i� the receive statement obtained from the poll expression

Chapter 2 - Automatic test case generation from Dynamic State Machines 34

by removing the square brackets is executable.
Every expression in Promela is also a statement and is considered executable if its

evaluation is equal to a non-zero value, i.e. it evaluates to true. If a process is at a control
point where there is no executable statement to execute, it blocks.

Compound statements and control-flow elements

In Promela, a semicolon-separated list of statements enclosed in curly braces is called
a sequence and treated syntactically as if it were a statement. Atomic sequences may
be de�ned by pre�xing a sequence with the keyword atomic. An atomic sequence
is a sequence that is required to execute indivisibly and is not to be interleaved with
other running processes, i.e. no other process is able to execute statements from the
moment the �rst statement in the atomic sequence is executed until the last statement
is completed. Notice that this is guaranteed only if all the statements in the atomic
sequence are executable. If a blocking statement is encountered during the execution of
the atomic sequence, atomicity is lost and other processes may execute. Once the blocking
statement becomes executable again, the process must compete with other processes and
be scheduled to execute before the execution of the atomic sequence can be resumed.

Selection construct The selection construct is used to de�ne a choice between the
execution of multiple options. A selection construct is started by the keyword if, ended
by fi and contains at least one option sequence. Each option sequence starts with a double-
colon and can be selected only if its �rst statement (called its guard) is executable. The
whole selection construct is executable if at least one of its options’ guards is executable.
The prede�ned condition statement else, executable if and only if no other statement
is executable for the process in the current control state, may be used as a guard for at
most one option sequence in the selection construct. If more than one guard is executable,
then the option sequence to execute is chosen non-deterministically from those having an
executable guard. After executing an option sequence, the process moves to the control
state following the selection construct. Listing 2.3 shows a selection construct. Note that
the arrow ‘->’ is a statement separator and is equivalent to ‘;’.

Repetition construct A repetition construct is started by the keyword do, ended by od
and, much like the previously-described selection construct, contains at least one option
sequence, each starting with a double-colon. In each iteration, an option sequence can be

Listing 2.3 Selection construct example
1: byte a=10,b=11;
2: if
3: :: (a <=10) -> printf ("first option "); a=0;
4: :: (b ==11); printf (" second option "); b=0;
5: :: else -> printf ("else case")
6: fi

Chapter 2 - Automatic test case generation from Dynamic State Machines 35

Listing 2.4 Repetition construct
1: short a,b;
2: init {
3: do
4: :: (1) -> a++; b++
5: :: (1) -> a--; b--
6: :: (a >0) -> break ;
7: od
8: }

Listing 2.5 Unless construct
1: short a,b;
2: init {
3: do
4: :: (1) -> a++; b++
5: :: (1) -> a--; b--
6: od unless {(a >0)}
7:
8: }

selected only if its �rst statement (called its guard) is executable and, if more than one
option sequence can be selected, the option to execute is selected non-deterministically.
After executing an option, the control �ow returns to the repetition construct. The
break keyword causes the control �ow to move to the statement immediately after the
repetition statement. Listing 2.4 show an example of repetition construct. In the example,
the �rst two options are always executable. If the variable a is positive, all three option
sequences can be non-deterministically selected. The loop terminates when the last option
is selected. The prede�ned, global, read-only, Boolean variable timeout that is true in
all global deadlock states, i.e. in those global states in which no process has executable
statements, can also be used as a guard in option sequences in repetition and selection
constructs.

Unless construct An unless construct has the form main unless escape, where
main and escape are blocks or a sequences of statements and are respectively called
main sequence and escape sequence. The executability of all statements inside the main
sequence is constrained to the non-executability of all guard statements in the escape
sequence. If a guard in the escape sequence becomes executable, the execution continues
with the remainder of the escape sequence. If no guards in the escape sequence becomes
executable during the execution of the main sequence, the escape sequence is skipped and
execution continues from the following state. An example of unless construct is shown in
2.5. Notice that this example is not equivalent to the repetition construct in 2.4: in the
latter it is possible to choose the third option and leave the repetition only during option
selection phase, while with the unless any statement is interrupted as soon as the guard
in the escape sequence becomes executable.

goto statements In Promela, control states can be labelled by pre�xing statements
with a label name which must be unique within the surrounding proctype or never
claim. A statement of the form goto L moves the control state to the one named L. For
examples of labelled control states and goto statements see Listing 2.6.

Chapter 2 - Automatic test case generation from Dynamic State Machines 36

Never claims

A never claim is used to de�ne a �nite or in�nite system behaviour that is of special
interest, usually because it should never occur. Never claims may be hand-written or
generated by Spin starting from a temporal logic formula [19]. A �nite behaviour is
matched if the claim reaches its �nal state, i.e. the control arrives at the closing curly
brace. In�nite behaviour is matched if the claim visits an accepting state in�nitely often.
Since Promela models have a �nite number of states, an in�nite behaviour necessarily
results in a path leading to a cycle. In particular, in�nite behaviours visiting an accepting
state in�nitely often result in a path leading to a cycle containing an accepting state. Thus,
to check whether an in�nite behaviour matches, the veri�er looks for a reachable cycle
containing a control location labelled with an accepting label, namely a label starting
with accept, e.g. accept_all, acceptstate, etc. Spin translates the never claim to a
di�erent process and executes it in lockstep with the proctypes, i.e. each global system
step can be seen as two transitions: one from the never claim process and the other
from one of the other processes, with the never claim process always moving �rst. If no
statement is executable in the never claim process, then no further move is possible in
the current path and a new execution is explored [21]. In the examples in Listing 2.6, the
never claim n1 matches the �nite behaviours in which the condition (State==S1) is
eventually satis�ed. The skip statement used in line 8 is a prede�ned dummy, always-
executable, statement having no side e�ects and is used because blocks cannot terminate
with a label. In n1, execution starts from the never_step selection statement. Since there
is an option with the else guard, the selection statement is always executable. If the
condition (State==S1) is satis�ed the control passes to the end_never skip statement
and, after executing the skip, reaches the �nal state and matches the never claim. If the
condition is not satis�ed, control returns to the selection statement. The never claim n2
matches in�nite behaviours in which the condition (State==S1) holds in�nitely often.
To do so, it is necessary to de�ne an accepting state accept. Execution in n2 starts in
T0_init and enters the repetition construct. Then, in each iteration, if the condition is
satis�ed, the control passes to the accept state, otherwise, control remains in T0_init.
Once the accept state is reached, control returns to T0_init. If a behaviour causes
the never process to visit in�nitely often the accept state, then in said behaviour the
condition (State==S1) holds in�nitely often.

2.2 Deriving Promela models from DSTMs

This section describes a fully-automatable procedure to translate a DSTM model into a
Promela speci�cation. An initial version of this translation process was originally pre-
sented in [5, 6] and fully implemented – part in Java and part in the Atlas transformation
language – within the context of the CRYSTAL project.

This �rst version, as made clear by the thorough analysis carried out as part of this
thesis work, fails to faithfully adhere to the DSTM formal semantics and is a�icted with
several, mainly concurrency-related, issues. An important part of this thesis work con-

Chapter 2 - Automatic test case generation from Dynamic State Machines 37

Listing 2.6 Never claims
1: never n1 {
2: never_step :
3: if
4: :: (State ==S1) -> goto end_never
5: :: else -> goto never_step
6: fi;
7: end_never :
8: skip
9: }

10: never n2 { /* []<>(State ==S1) */
11: T0_init :
12: do
13: :: (State ==S1) -> goto accept
14: :: else -> skip
15: od;
16: accept : /* accepting control state */
17: do
18: :: (1) -> goto T0_init
19: od;
20: }

sisted in �nding ways to address these issues and in patching the existing implementation
accordingly. In what follows, an updated version of the translation process is described
and particular emphasis is put on the original contributions of this thesis work.

2.2.1 An overview of the translation process

The proposed translation is a two-step process. The �rst �attening step transforms the
given DSTM model into ordinary state machines by removing the hierarchical structure.
This �attening step is necessary since Promela has no support for hierarchical speci�ca-
tions. The second step transforms the resulting ordinary state machines into an actual
Promela speci�cation which also takes care of modelling a possibly non-deterministic
environment. These two steps are described in detail in the following sections 2.3 and 2.4,
respectively.

2.3 Fla�ening the DSTM into ordinary state machines

This subsection describes a procedure to transform a hierarchical DSTM speci�cation
into a sequence of concurrent ordinary (�at) state machines, which are easily encodable
in Promela.

In order to remove hierarchical structure from a DSTM model, it is necessary to remove
all boxes, forks and joins and substitute them with suitably-de�ned nodes and transitions,
which are also used to model the activation of other �at machines and termination
synchronization.

Chapter 2 - Automatic test case generation from Dynamic State Machines 38

When removing a box, three di�erent situations are possible, depending on the
structure of the DSTM model. Therefore, three di�erent mapping schemata are de�ned:

simple box all the transitions entering the box have as source other boxes or nodes;

asynchronous fork the source of the transition entering the box is a fork pseudo-node
and there exists an asynchronous fork transition from the fork pseudo-node to a
node. Note that, by De�nition 2, in a well-formed DSTM, if a transition from a fork
enters a box, then no other transitions are allowed to have the box as target.

synchronous fork the source of the transition entering the box is a fork pseudo-node
and there exists no asynchronous fork transition exiting the fork pseudo-node.

In the following, each mapping schema is described in detail.

Simple box

In this case the box is substituted by a node having the same name. All transitions whose
source (resp. target) is the box are substituted by transitions exiting (resp. entering) the
newly-created node and inherit the original transitions decorations. Those decorations,
however, must be suitably enriched in order to model the instantiation of the other ma-
chines associated with the box and allow the calling machine to notice the called-machines
eventual termination. When dealing with entering transitions, triggers and guards stay
unchanged, but it is necessary to add more actions to account for the instantiation of
the machines associated with the box. Hence, for each of such machines, a run action is
added, corresponding to the Promela run instruction performing process activation. A
run action has the form run MachineName(paramList). paramList is a list associating
to each parameter in the called machine a term in its domain and contains also additional
parameters, needed to correctly handle machine termination and the steps semantics. In
particular, the following additional parameters are added:

• a parent parameter, containing the process identi�er of the process being above
the one being instantiated in the hierarchy. In the simple box case, this parameter
corresponds to the calling process’ identi�er;

• an initialState parameter, used to specify which entering state is the initial state
for the instance being instantiated;

• for a machine having n exiting states, n + 1 parameters are added, each to be actual-
ized with an internal channel name. These channels are used to handle process ter-
mination. In particular, for each exiting node exit in the machine MachineName in-
stantiated by the box boxName, a channel of bits chTerm_boxName_MachineName-
_exit is introduced. Each of these channels is used by the called process to signal
the reaching of the corresponding exiting state to the calling process. An addi-
tional channel of bits named chTerm_boxName_MachineName is used by the caller
process to issue a termination message to the called process.

Chapter 2 - Automatic test case generation from Dynamic State Machines 39

As regards the transitions exiting the box, each of them is replaced by a transition exiting
the node substituting the box and inheriting the original transition’s decoration. If the
original transition is a return by exiting, the guard needs to be enriched with a new
condition checking for the termination of the instantiated machine in the required state
having the form chTerm_boxName_MachineName_exit[?<1>]. If the original transition
is a return by default, the guard needs to be enriched with a new condition checking
for the termination of each of the called machines. To check for a machine termination,
regardless of the exiting state, one can simply use a disjunction of all conditions of the
form chTerm_boxName_MachineName_exit[?<1>], one for each exiting node exit. So,
the new condition to be added is a conjunction of machine termination checks, one for
each machine instantiated by the box. If the original transition is a return by interrupt,
there is no need to enrich the transition guard. Moreover, in either case, when a return
transition �res all the called processes must terminate. This is achieved by adding, for
each called process, an action of the form chTerm_boxName_MachineName!<1> sending
a termination message to the called process and an action of the form chTerm_boxName_-
MachineName_exit!<_> for each exiting node exit to clean the corresponding channel
from the eventual termination messages.

Also notice that the proposed naming schema for termination-handling channels is
intended to be a simplistic example for explanation purposes and may lead to ambiguity
in particular cases, e.g. when a box instantiates two instances of the same machine, when
two boxes in di�erent concurrent machines have the same name and instantiate the same
machine, or when processes are dynamically instantiated via asynchronous forks. These
ambiguities shall be addressed when implementing the transformation. For the level of
detail of this description it su�ces to assume that a distinct communication channels
is used for each caller-called couple of processes and for each caller-called exiting node
couple.

Asynchronous fork

After performing an asynchronous fork the calling process continues to run concurrently
with the newly-instantiated processes. By well-formedness (see De�nition 2), if there
is an asynchronous fork transition then there is also a corresponding join pseudo-node.
Moreover, all the control �ow between the fork and the join is contained within the
boxes entered by the fork, i.e. the fork enters a set of boxes and the return transitions
from these boxes must enter the associated join. Hence the fork, the join and the boxes
entered by the fork can be considered as a single block to be removed and substituted
with suitable transitions. Some of these transitions model the fork operation and lead
from the source node of the entering fork transition to the target node of the asynchronous
fork transition. These transitions instantiate the necessary processes with appropriate
run actions and also take care of modelling the di�erent permutations of the actions
associated with the transitions exiting the fork pseudo-node (see De�nition 10). Notice
that, in this case, the parent parameter corresponds to the parent of the calling process,
as the new processes instantiated by an asynchronous fork are siblings of the calling

Chapter 2 - Automatic test case generation from Dynamic State Machines 40

process in the hierarchy tree. In a similar way, to model the join operation it is necessary
to add one or more transitions, depending on the join being preemptive or not. Each of
these transitions leads from the target node of the asynchronous fork transition to the
target of the exiting join transition. If the join is non-preemptive, it is replaced by a single
transition inheriting trigger and guard from the entering join transition and enriching the
guard with a condition requiring the termination of each machine instantiated by the
joined boxes. Moreover, the action needs to deal with the termination of the spawned
processes – which is done as described in the simple box case above – and must include
the action of the exiting join transition. If the join is preemptive, it is replaced by a set of
transitions, one for each transition entering the join and quali�ed as preemptive. Each of
these transitions inherits the same trigger and guard as the original preemptive transition
they are associated with. If the original preemptive transition is a return (either by default
or by exiting) having source in a box b, the guard needs to be enriched with appropriate
conditions requiring the termination of the machines associated with b as previously
described in the simple box case. The actions are de�ned as in the non-preemptive case.

Synchronous fork

In the synchronous fork case, the calling process suspends itself and waits for the ter-
mination of the called processes. In this case, the fork pseudo-node, the boxes the fork
enters and the (optional) associated join are considered as a single block and are replaced
by a new wait node and suitably de�ned transitions to and from the newly-introduced
wait node. The new transitions introduced to model the fork operations are de�ned as in
the asynchronous fork case, with the exception of the parent parameter receiving in this
case, as in the simple box one, the process identi�er of the calling process. The transitions
necessary to model the join operations are de�ned as in the asynchronous fork case.

Example 8 (Flattening the Counting DSTM speci�cation). Consider the Counting DSTM
speci�cation detailed in Figure 1.1 and in Table 1.1. Its �attening is represented in Figure
2.2 and detailed as follows. When �attening the Main machine, the box counterBox needs
to be removed and falls in the simple box case. So, counterBox is removed and replaced
by a node having the same name. Transition T2 is replaced by a transition having the
same name and inheriting its decoration, with an additional run action of the form run
Counter(100,pid,default,...), where 100 is the actualization for the P_to parame-
ter, pid is the calling process identi�er, default is the initial state for theCountermachine,
and additional parameters are the channels chTerm_counterBox_Counter_limit, and
chTerm_counterBox_Counter. T3, being a return by interrupt transition, is replaced by
a transition with the same name exiting the node counterBox and inheriting the original
decoration, with additional actions having the form chTerm_counterBox_Counter!<1>
and chTerm_counterBox_Counter_limit?<_>, used to send a termination signal to
the spawned Counter process and to remove the received termination signal from the
channel. T4, being a return by exiting transition, is replaced by a transition with the same
name exiting the node counterBox and inheriting the original decoration. Its guard is

Chapter 2 - Automatic test case generation from Dynamic State Machines 41

initial

idle1 counterBox

interrupted

stopped

T1 T2

T3

T4

Main

default

idle2 wait

limit

T5 T6 T7 T8 T9 T10 T11

Counter

byOne

byTwo

simpleIncr

doubleIncr

finished

T12

T13
T14

T15

T16

Incrementer

Figure 2.2: The �attened Counting DSTM speci�cation

enriched with an additional condition requiring for the termination of the Counter ma-
chine (chTerm_counterBox_Counter_limit[?<1>]) and an additional action sending
a termination signal to the spawned Counter process is added, as in T3.

When �attening the Counter machine, the fork, the join and the boxes in between
need to be removed as detailed in the synchronous fork case. Therefore, the fork, the join
and the boxes are removed and replaced by a wait node and transitions T6_T7_T8 and
T9_T10_T11. T6_T7_T8 models the fork operations and inherits trigger and guard from
the entering fork transition T6 (recall that, as detailed in Table 1.2, call transitions having
as source a join pseudo-node must have trivial triggers and guards). Two additional run
actions having the form run Incrementer(P_to,pid,<init>,...) are introduced,
with P_to being the actualization for Incrementer’s parameter P_limit, pid being the
process identi�er of the calling process, <init> being respectively byOne and byTwo (as
one of the call transitions exiting the fork is a call by entering), and additional parameters
being chTerm_<box>_Incrementer_finished and chTerm_<box>_Incrementer, with
<box> being respectively boxIncr1 and boxIncr2. Since there is no action associated with
the call transitions T7, T8, a single transition su�ces to handle all possible permutations.
As the join is preemptive and T9 is the only transition entering the join and quali�ed as
preemptive, the join operations are modelled by the single transition T9_T10_T11 leading
from the wait node to the exiting limit node, target of the exiting join transition T11. Such
action has a guard requiring the termination of the Incrementer machine instantiated by
boxIncr1 (chTerm_boxIncr1_Incrementer_finished[?<1>]), inherits its action from
T11 and has additional actions needed to send the termination signal to each joined
machine (chTerm_<box>_Incrementer!<1>, with <box> being in {boxIncr1, boxIncr2})
and to remove the message from channel chTerm_boxIncr1_Incrementer_finished.
The Incrementer machine is una�ected by the �attening step since it contains neither

Chapter 2 - Automatic test case generation from Dynamic State Machines 42

default

waiting
T1

T2 T3 T4

T5 T6 T7

Dynamic

Figure 2.3: The �attened Dynamic DSTM speci�cation

boxes nor forks.

Example 9 (Flattening the Dynamic DSTM speci�cation). As an example of �attening
involving an asynchronous fork, consider the Dynamic DSTM speci�cation detailed
in Figure 1.2 and in Table 1.3. Figure 2.3 depicts the �attening of the Dynamic DSTM
model, as explained in what follows. The entire block containing the fork, the join, and
the boxIncr box is replaced by the two transitions T2_T3_T4 and T5_T6_T7, modelling
respectively the fork and the join operations. Transition T2_T3_T4 leads from the source
of the entering fork transition T2 to the target of the asynchronous fork transition, and is
therefore a self-loop on the waiting state. The transition inherits triggers and guards from
the entering fork transition T2 and, in addition to the actions inherited from transitions
T2, T3 and T4, an appropriate run action is added to instantiate the Incrementer machine,
similarly to what shown in the previous example. No other transition is necessary to
model the fork as T3 is decorated with the empty action and there is only one possible
permutation for the actions exiting the fork. T5_T6_T7 models the join operation and
leads from the target node of the asynchronous fork transition to the target of the exiting
join transition, therefore it is –again– a self-loop on node waiting. This transition inherits
trigger and guard from the entering join transition T2, has an additional guard condition
requiring the termination of the Incrementermachine (chTerm_boxIncr_Incrementer_-
limit[?<1>]), inherits the action from T7 and has the usual additional actions to send the
termination signal to the Incrementer machine and to remove the termination message
from channel chTerm_boxIncr_Incrementer_limit. As already noticed in the previous
example, the Incrementer machine is not a�ected by the �attening step as it does not
contain any box or fork.

2.4 Promela encoding for the flat model

To obtain a procedure to translate a �attened model into a Promela speci�cation it is
necessary to address the following key points:

• translation of data-�ow elements;

• encoding of �at machines;

Chapter 2 - Automatic test case generation from Dynamic State Machines 43

Listing 2.7 Multi-type and external channel mapping in Promela
1: mtype ={ white ,red ,green };
2: chan ch_Int = [3] of {bit , int };
3: chan ch_Colour = [3] of {bit , mtype };
4: chan chExt = [2] of {bit ,int} /* external channel */

• orchestration of the concurrent �at machines and correct realization of the steps
semantics.

This section deals �rst with the translation of data-�ow elements, i.e. how to map a
DSTM type, variable or channel to its Promela equivalent, in Subsection 2.4.1. Then,
after an overview of the Promela speci�cation’s structure in 2.4.2, Subsection 2.4.3 deals
with the simpli�ed problem of mapping non-hierarchical DSTM models to Promela.
Subsection 2.4.4 presents a mechanism to correctly enforce DSTM steps semantics and,
�nally, Subsection 2.4.5 provides a general schema to map DSTM models to Promela
speci�cations.

2.4.1 Translation of data-flow elements

The mapping of DSTM types and variables to their Promela equivalent is rather straight-
forward, with the DSTM type Int being naturally mapped to the Promela int type
DSTM user-de�ned enumeration basic types being mapped to mtypes and compound
types being mapped to suitable user-de�ned Promela datatypes declared with typedef.

Internal DSTM channels are mapped to Promela channels having a bu�er size equal
to the bound of the DSTM channel. If the DSTM channel is not a multi-type channel,
the type of the messages conveyed by the Promela channel is obtained from the DSTM
channel type as described above. Conversely, if the DSTM channel is a multi-type channel,
it is modelled by a set of Promela channels, one for each simple type. These channels are
managed in a way that guarantees that, in each position, at most one of them contains
a valid message. This can be achieved by adding a validity bit �eld to each message
in the channels. As an example, consider the basic DSTM enumeration type Colour =
{white, red, green} and the multi-type MT = {Int, Colour}. The DSTM internal channel
ch, having bd(ch) = 3 and type(ĉh) = MT, is mapped to the two Promela channels ch_Int,
ch_Colour as shown in Listing 2.7.

External channels are encoded in Promela by channels having bu�er size of two, with
the �rst position containing the message for the current step and the second containing
the eventual message for the next step, if produced during the current step. In order
to ensure that messages produced in the current step are stored in the second position
and avoid that a message produced during the current step triggers transitions in other
processes in the same step, the external channels are managed in a way that guarantees
that the �rst position is always �lled. To do so – as with the multi-type internal channel
mapping – an additional validity bit �eld is introduced in every message, so that an
empty external channel can be modelled by a channel containing an invalid message in

Chapter 2 - Automatic test case generation from Dynamic State Machines 44

Listing 2.8 External channel management code
1: chan ext = [2] of {bit ,bit }; // external channel declaration
2: if
3: :: (len(ext) < 2) -> { // must generate new message
4: if
5: :: (1) -> {ext !0 ,0} // invalid message
6: :: (1) -> {ext !1 ,0} // valid message
7: :: (1) -> {ext !1 ,1} // valid message
8: fi
9: }

10: :: else -> skip // system already generated next step message
11: fi
12: if
13: :: len(ext)==2 -> ext?temp1 ,temp2
14: :: else -> skip // len(ext)=1 on the first step
15: fi

the �rst position. As an example, consider the external channel chExt of type Int. Its
Promela mapping is the channel chExt shown in Listing 2.7. To comply with the DSTM
speci�cation, additional management operations on external channels are required. In
the proposed encoding, such actions are assigned to the mentioned Engine process. In
what follows, the necessary management operation for external channels are described.
At the beginning of the initial step (see Section 1.3.3) a possibly empty message for each
external channel is generated non-deterministically and sent in the �rst position. If an
empty message is generated, an invalid message of the form (0,_) is sent. Before each
subsequent step, the �rst message is removed from every external channel and, after that,
if the external channel is empty – i.e. there was no message generated during the previous
step in the second position – a possibly empty message is generated non-deterministically
as in the previous case. An example of Promela code to perform said management
operation on the external channel chan ext = [2] of {bit,bit} is shown in Listing
2.8. The selection construct in lines 2–11 has two option sequences. The �rst one (line 3) is
executable when the external channel is not full, i.e. when the next step is the �rst one or
when, during the previous step, no external message was generated by the system. In this
case a possibly-invalid new message is non-deterministically generated (lines 5–7) and
sent over the channel. The second option (line 10) is executable only when the channel
is full, i.e. the system has generated a message during the previous step, in which case
no message generation occurs. Then control passes to the second selection construct
(lines 12–15) in which, if the channel is full, the �rst message is consumed, otherwise the
dummy statement skip is executed. This selection is necessary to avoid consuming the
channel’s message before the �rst step, when only a message is present.

2.4.2 An overview of the Promela specification

Given a DSTM model D = 〈M1, . . . ,Mn,X ,C, P〉, the proposed Promela encoding is
structured as follows: (i) an initial section containing global declarations of datatypes,

Chapter 2 - Automatic test case generation from Dynamic State Machines 45

variables, and channels; (ii) an active proctype named Engine, the purpose of which
is to initialize external channels before each step and to ensure that the DSTM steps
semantics is ful�lled; (iii) a proctype declaration for each of the n machines;

2.4.3 Mapping a flat DSTM to a Promela specification

Before addressing the more complex issues related to process synchronization and steps
semantics, this subsection deals with the simpler problem of Promela-encoding a DSTM
speci�cation containing a single �at machine. This simpli�ed construction shows the
main intuitions behind the proposed translation process and will be properly extended to
work in the general case in the following subsections.

Consider a �at DSTM F = 〈M1,X ,C, P〉. The �attening step does not alter the structure
of M1, since it is already a �at machine, and only adds parameters and enriches transitions
decorations as described in 2.3. The general schema shown in Listing 2.9 can be used to
obtain a Promela encoding from the �attening of F . In the �rst part, global variables,
channels and datatypes used in the DSTM model F are declared in Promela, as previously
described. Moreover, symbolic constants to refer to states are introduced in line 5. The
HasToken bit array declared in line 7 is needed to avoid sequential �rings of transitions
within the same step, as will be soon explained.

Starting from line 9, the proctype for the �attened machine M1 is de�ned. The M1
proctype has the same parameters described in 2.3 and declares a local mtype variable
named state used to store the current state, initializing it to the value received in the
initial parameter. After that, the process enters the main repetition construct, exiting
only when a termination signal is received on the dedicated channel chTerm (see the
unless construct at line 24). Inside the main repetition construct there is one option se-
quence for each machine state S, having guard (state == S && HasToken[_pid]==1).
Each option sequence immediately consumes the token (see line 16) and then enters a
selection construct to (possibly non-deterministically) choose which transition to perform.
Such transition selection construct contains an option sequence for each transition t exit-
ing the state S. Each option sequence is guarded by a condition having the form (ξ ∧ ϕ),
with ξ and ϕ being respectively the trigger and the guard associated with the transition,
and performs the required actions speci�ed in the transition’s decoration. Moreover, each
option sequence takes care of setting the state variable to the corresponding transition’s
target.

Starting from line 30, the Engine process is de�ned and quali�ed as active. After
declaring and initializing the channels required for termination synchronization with
M1 (line 33), Engine activates an instance of the M1 proctype and enters a repetition
construct with three option sequences: the �rst (line 36) is enabled when a termination
signal from M1 is received on the dedicated channel and, after sending a termination
signal back to M1, allows Engine itself to exit the repetition construct and terminate;
the second is enabled only when no other process has enabled statements and at least
one transition has been performed during the current step, and, after performing the
necessary management operations on external channels, resets the HasFired �ag for

Chapter 2 - Automatic test case generation from Dynamic State Machines 46

Listing 2.9 Flat DSTM encoding schema
1: # define MAX_PROC 2; // maximum number of concurrent processes
2: // Global variables , channels , datatypes declarations
3: bit x; int y; chan c = [8] of bit; ...
4: // Mtype declarations for each machine ’s state name
5: mtype = {S1 , S2 , S3 , ...};
6: bit HasFired ; // set to 1 if a trans. fired during current step
7: bit HasToken [MAX_PROC]; // track which processes own the token
8:
9: proctype M1(pid parent ,mtype initial ,chan chTerm ,chan chTerm_ex){

10: mtype state = initial ;
11: do // main repetition construct
12: // for each state S ∈ Ni ∪ Eni
13: :: (state == S && HasToken [_pid]==1) ->
14: atomic {
15: HasToken [_pid]==0; // consumes token
16: if // transition selection construct
17: // for each trans. t with Src1(t) = S, Trg1(t) = T, Dec1(t) = 〈ξ ,ϕ,α〉
18: :: (ξ ∧ ϕ) -> {
19: α; state = T; // sets next state
20: HasFired = 1;
21: }
22: fi
23: }
24: od unless {
25: (chTerm ?[1]) -> // if termination signal arrives
26: chTerm ?1;
27: }
28: }
29:
30: active proctype Engine (){
31: pid PidMain ;
32: // initialize channels required for termination sync with M1
33: chan chT_M1 = [1] of bit , chT_M1_exit = [1] of bit;
34: PidMain = run M1(_pid ,init ,chT_M1 , chT_M1_exit);
35: do
36: :: (chT_M1_exit ?[1]) -> { chT_M1 !1; break }
37: :: (timeout && HasFired == 1) -> {
38: // initialize external channels for next step
39: HasFired = 0; HasToken [PidMain] = 1
40: }
41: :: (timeout && HasFired == 0) -> { chT_M1 !1; break}
42: od
43: }

Chapter 2 - Automatic test case generation from Dynamic State Machines 47

the next step and passes the token again to the M1 process; the third is enabled when no
other process has executable statements and no transition �red during the current step
and, much like the �rst option sequence, makes the Engine terminate after sending a
termination signal to M1.

During a normal execution step, process M1 receives the token from Engine and this
makes the main repetition construct executable for M1, since one of the option sequences
is necessarily enabled. After entering the option sequence corresponding to its current
state, M1 consumes its token and enters the transition selection construct. Here, assuming
that the selection construct is executable – i.e. there is at least one enabled transition –
M1 selects an option sequence, executes it and returns to the main repetition construct,
which will now necessarily be non-executable since all sequence options are guarded by
an HasToken[_pid] condition. The unavoidable deadlock makes the second option in
the repetition construct in Engine executable and the next step can start. Without the
HasToken condition, M1 could �re multiple transitions in a single step without the proper
external channel management operations being performed by Engine. On the contrary,
suppose that the transition selection construct is not executable during a certain step,
then M1 just blocks without setting the HasFired �ag and the third option in the Engine
repetition construct becomes executable. In this case, the current execution has “wasted”
a step (perhaps because the external signals required to make the system progress were
not generated during the non-deterministic signal generation). In this case there is no
need to continue the current run, since there will necessarily be a “luckier” run where the
required signals are generated earlier and the same behaviour will occur without wasting
steps.

2.4.4 Enforcing the steps semantics

Accordingly to the DSTM semantics, given a global system state s = 〈〈Vx, λ〉, Fr, θ〉, the
machine Mi is allowed to execute and perform a compound transition ct i� the compound
transition is enabled with regard to the state s and to a set N of children of Mi in the
control tree, i.e. the predicate Enabled(ct,N), as de�ned in 1.3.3, holds in s . With the
removal of explicit hierarchy during the �attening step, there are no compound transitions
anymore and the above conditions can be simpli�ed. A process is allowed to execute and
perform a transition i�:

(i) it has not executed yet during the current step (sequential �ring of transitions is
forbidden);

(ii) none of the processes it instantiated and of their descendants has executed;

(iii) none of its ancestors can perform a transition.

Conditions (i) and (ii) are enforced in the DSTM semantics by the frontier itself, with
the nodes being source of a transition in a step being required to belong to the frontier
and being removed from the frontier along with their descendants during the transition

Chapter 2 - Automatic test case generation from Dynamic State Machines 48

initMain

idleMain

boxMain
[Send, Wait]

exitMain

T1 T2 T3

Main

initWait
idleWait

boxWait
[Count]

exitWait

T4 T5 T6

Wait

initCount

count
T7

T8

Count

initSend

ready sent

exitSend

T9 T10 T11

Send

Figure 2.4: The Prelation DSTM model

�ring (see de�nition 10). Condition (iii) comes from the de�nition of enabled-ness for
compound transitions given in 1.3.3.

In the initial version of this translation process [5, §5.2], Benerecetti et al. dealt with the
enforcement of steps semantics with the token-passing mechanism described as follows.
Each Promela process, modelling a DSTM machine, is required to own a token in order
to perform a transition. When a process holding its token is scheduled, it consumes its
token and tries to execute a transition. If no transition is executable, the process passes
its token on to its children. When no process is able to execute, because every process
either has consumed its token or has never received it from its parent, the Engine process
starts a new step. At the beginning of each step, the Engine process passes the token back
to the main machine.

This mechanism is however incorrect and could lead to non-maximal steps, as shown
in Example 10.

Example 10 (Token-passing mechanism failure). Consider the DSTM model

Prelation = 〈M1,M2,M3,M4,X ,C, P〉,

where X = {x}, C = {sig}, P = �, and M1,M2,M3,M4 are respectively the machines
Main, Wait, Count, and Send depicted in Figure 2.4 and detailed in Table 2.2.

Suppose that Prelation has been �attened as described in 2.3 and that a Promela
encoding has been produced. Consider now the step in which the Send machine sends
the signal over channel sig. At the beginning of the step, Engine passes the token to
the Main machine, which is in the state corresponding to the box boxMain and has no
enabled transitions. Having no enabled transitions, Main passes the token to its children
Wait and Send. Suppose that the Wait process is scheduled before Send. Wait has no
enabled transitions, since transition T6 requires a message on channel sig, and passes its

Chapter 2 - Automatic test case generation from Dynamic State Machines 49

T1 Src1 Trg1 Dec1 Inst1

T1 initMain idleMain 〈τ , True, ε〉 �
T2 idleMain boxMain 〈τ , True, ε〉 �
T3 boxMain exitMain 〈τ , True, ε〉 �

T2 Src2 Trg2 Dec2 Inst2

T4 initWait idleWait 〈τ , True, ε〉 �
T5 idleWait boxWait 〈τ , True, ε〉 �
T6 boxWait exitWait 〈sig?1, True, ε〉 �

T3 Src3 Trg3 Dec3 Inst3

T7 initCount count 〈τ , True, ε〉 �
T8 count count 〈τ , x<10, x=x+1〉 �

T4 Src4 Trg4 Dec4 Inst4

T9 initSend ready 〈τ , True, ε〉 �
T10 ready sent 〈τ , x>=10, sig!1〉 �
T11 sent exitSend 〈τ , True, ε〉 �

Table 2.2: Transition structure for the Prelation DSTM model

token to its child Count, which likewise cannot perform any transition and just consumes
its token. When the Send process is selected by the non-deterministic Spin scheduler, it
executes transition T10 and sends a message on channel sig. After that, no other process
can execute since no one owns the required token and the step abruptly ends with a
non-maximal set of transitions, as transition T6 is now enabled and should be executed in
the current step.

The main intuition behind the new mechanism devised during this thesis work to
correctly enforce steps semantics is to perform more than one token descent during the
simulation of a DSTM step. Similarly to the previously-described mechanism, at the
beginning of each step the main process and possibly its siblings in the process hierarchy
– if the main process performed asynchronous forks – receive the token from Engine.
Every process owning the token consumes it when scheduled and tries to execute a
transition. If no transition is executable, the process passes its token on to its children.
This token-passing process continues until reaching a state in which no process is able to
execute, because every process either has consumed its token or has never received it from
its ancestors which have executed. At this point, the mechanism described in [5] would
conclude the current step and prepare the system for the next one. On the contrary, in the
new mechanism, Engine passes the token again to the main process and to its siblings until
a deadlock is reached without any transition being �red during the token descent phase.
When this happens, the current step ends and Engine can initialize the next one. With the
new mechanism admitting multiple token descents, a process whose child executed in
a previous descent might be able to execute within the same step, thus violating DSTM
semantics. To address this issue, a new �ag DescendantExecuted is introduced and set to

Chapter 2 - Automatic test case generation from Dynamic State Machines 50

true for all those processes having a descendant which already executed during the current
step. After the execution token is propagated downwards in the process hierarchy, the
DescendantExecuted �ag is propagated upwards from those processes which directly
performed a transition to their parent, until the root of the hierarchy is reached. This is
achieved by using a �ctitious backProp state, as explained below. The process of passing
the token to the main process and its sibling, propagating the token downwards the
process hierarchy and subsequently propagating the DescendantExecuted �ag upwards
from those processes who directly performed a transition to their ancestors is called a
phase. Once a phase is concluded, Engine can either start a new phase by giving the token
again to the main process and to its siblings, or start a new step, if no transition was �red
during the latest phase. Clearly, the conditions guarding the execution of a transition
for a process need to be suitably enriched considering the new DescendantExecuted
�ag, allowing only those processes owning the token and not having the Descendant-
Executed �ag set to perform transitions. The proposed mechanism is described in greater
detail as follows:

(i) at the beginning of the step, after the proper management operation for external
channels are performed, Engine passes the token to the main process and to its
siblings. At this point, every process has its DescendantExecuted �ag set to false.
The global �ags HasFired, isFirstDescent, and updateState are set to false;

(ii) every process owning the token and not having its DescendantExecuted �ag set,
consumes its token when scheduled and tries to execute a transition. If a transition
is executed, the global �ag HasFired is set to true and a local variable nextState
is used to store the machine’s next state. If no transition is executable, the process
passes its token on to its children and nextState is set to hold the same value as
state. In either case, state is set to the �ctitious state backProp, entering the
backpropagation sub-phase in step (iii);

(iii) every process in the backProp state can execute if its DescendantExecuted �ag
is set, in which case it sets the DescendantExecuted �ag for its parent. Once a
deadlock state is reached, execution continues with step (iv);

(iv) Engine activates and

(a) if the HasFired �ag is set and the updateState is not, then the current
descent is completed and its necessary to reset the state variable for each
process from the backProp state to its intended value stored in nextState.
This is done by setting the global updateState �ag and continuing as in step
(v);

(b) if the HasFired and the updateState �ags are set, a new descent is to be per-
formed within the same step. The isFirstDescent and hasFired �ags are
unset, the main process and its sibling receive the token again, and execution
continues from step (ii);

Chapter 2 - Automatic test case generation from Dynamic State Machines 51

(c) if the HasFired, isFirstDescent and updateState �ag are unset, then
execution continues like in (iv).(a);

(d) if the HasFired, isFirstDescent are unset and the updateState �ag is set,
the current step is concluded and execution continues as in (i);

(e) if the HasFired �ag is unset and the isFirstDescent is set, then the current
computation has “wasted” a step and is aborted, for the same reasons already
discussed in 2.4.3.

(v) every process being in the backProp state is allowed to execute when the global
�ag updateState is set. During this sub-phase, each process resets its state to the
intended value stored in nextState. Once every process has been scheduled and
has restored its state, a deadlock occurs and execution continues from step (iv).

To better explain this rather complex mechanism, Example 11 shows how it behaves in
the same situation described in Example 10.

Example 11 (The new mechanism in action). Consider again the Prelation DSTM model
described in Example 10. Suppose that it has been �attened as described in Section 2.3, that
a Promela encoding has been produced, and consider – like in the previous example – the
step in which the Send machine sends the message over channel sig. At the beginning of
the step, Engine performs the proper initializations as described in (i) and passes the token
to its child Main, which is blocked in its boxMain state, since neither the Send nor the
Wait machine have terminated. Having no executable transition, Main sets its nextState
to boxMain, its state to backProp, and passes the token on to its children Wait and Send.
Suppose that Wait is scheduled before Send. Wait, being in the boxWait state, has no
executable transition, thus sets its nextState to boxWait, its state to backProp, and
passes its token to its child Count which is in the count state and, similarly, cannot perform
any transition, sets its nextState to count, its state to backProp, and consumes its
token. When the Send process is scheduled, it executes transition T10, sets its nextState
to sent, its state to backProp, its DescendantExecuted �ag and the global HasFired
�ag to true, and consumes its token. At this point, process Send can execute again,
because its state is backProp and its DescendantExecuted �ag is set (see point (iii) in
the previous description), thus it sets its parent’s (Main) DescendantExecuted �ag. After
that, Main similarly sets Engine’s DescendantExecuted �ag and the system reaches a
deadlock state. Engine regains control (see point (iv)) and, since the HasFired �ag is set
and the updateState is not, proceeds as described in (iv).(a). At this point (see point
(v) in the previous description) every process restores its state from backProp to the
value stored in nextStep. After that, the system �nds itself in deadlock again and control
returns to the Engine process. This time, both the HasFired and the UpdateState �ags
are set and Engine, as described in (iv).(b), unsets the HasFired �ag and gives the token
again to the Main process, which can only pass the token on to its children Wait and
Send, after storing its current state in nextState and setting its state to backProp. Notice
that, even if Main had enabled transitions, it would not have been allowed to execute

Chapter 2 - Automatic test case generation from Dynamic State Machines 52

Listing 2.10 DSTM encoding schema – part 1: global declarations
1: # define MAX_PROC 255; // maximum number of concurrent processes
2: // Global variables , channels , datatypes declarations
3: bit x; int y; chan c = [8] of bit; ...
4: // Mtype declarations for each machine ’s state name
5: mtype = {S1 , S2 , S3 , ..., backProp };
6: // Data objects needed to properly model the system
7: bit isFirstDescent = 1;
8: bit HasToken [MAX_PROC];
9: bit HasFired = 0;

10: bit dyingPid [MAX_PROC];
11: bit HasExecuted [MAX_PROC]; // set if pid executed in current step
12: bit descendantExecuted [MAX_PROC];
13: bit updateState = 0;
14: // structure needed to keep track of the process hierarchy
15: typedef childrenArray {
16: bit children [MAX_PROC];
17: }
18: childrenArray ChildrenMatrix [MAX_PROC];

them anyway, since its DescendantExecuted �ag is set. Similarly, Send is not allowed to
execute any transition despite the fact that it owns the token and has an enabled transition
(T11), and is only allowed to consume its token, store its next state in nextState and set
its state to backProp. When Wait is scheduled, it can perform transition T6, since it owns
the token and its DescendantExecuted �ag is unset. After executing the transition, the
process’ DescendantExecuted and the HasFired �ags are set, the next state is stored
in nextState and state is set to backProp. After that, Wait is allowed to execute and
propagate to its parent Main the DescendantExecuted �ag. As in the previous phase,
after the deadlock, every process resets its state to its intended value and a new phase
starts. During this phase no process can execute, and the system eventually reaches a
deadlock state with the HasFired �ag set to false. After restoring the correct states for
the next step (see (iv).(c)), Engine concludes the current step – which now includes both
transition T10 and T6 and is indeed maximal – and starts the next one (see (iv).(d)).

2.4.5 Mapping a DSTM model to a Promela specification

With a mechanism to correctly implement steps semantics in place, it is now possible to
extend the mapping schema described in Subsection 2.4.3 to obtain Promela encodings
of hierarchical DSTM models. Consider a DSTM model D = 〈M1, . . . ,Mn,X ,C, P〉 and
suppose the �attening step has been applied to it, obtaining n �at machines. The corre-
sponding Promela encoding for D is quite similar to the one described in 2.4.3 and is
described as follows.

The �rst part of the Promela speci�cation contains declarations of global variables,
channels and datatypes. This includes both data objects used in the DSTM model and data
objects required to properly model the system. Listing 2.10 shows the general schema for

Chapter 2 - Automatic test case generation from Dynamic State Machines 53

this part of the speci�cation. The schema is very similar to the one described in 2.4.3, with
the main di�erence being the addition of the �ags mentioned in the previous subsection
and the newly-introduced data structure ChildrenMatrix, a square matrix of bits of size
MAX_PROC, declared in lines 15–18. This structure is needed to keep track of the process
hierarchy and is used in such a way that the bit ChildrenMatrix[A].children[B] is
set i� the process with pid B is a child of the process with pid A.

The second part of the speci�cation contains n proctypes, each one obtained as
described in the schema shown in Listing 2.11. The generic M proctype has the same
parameters as the corresponding �attened machine, and starts with declaration of local
variables and channels required for termination synchronization with its children, if
any. Then, the process enters the main repetition construct (line 6), exiting only when
a termination signal is received on the dedicated channel chTerm or when a its parent
pid is marked as “dying” (see the unless construct at line 40). Inside the main repetition
construct there is one option sequence for each machine state S, having guard (state ==
S && HasToken[_pid]==1). Each option sequence immediately consumes the token
(line 9) and then enters a selection construct to (possibly non-deterministically) choose a
transition to be executed. This transition selection construct contains an option sequence
for each transition t exiting the state S. Each option sequence is guarded by a condition
having the form (ξ && ϕ && !DescendantExecuted), with ξ and ϕ being respectively
the trigger and the guard associated with the transition, and performs the required ac-
tions speci�ed in the transition’s decoration. For each run statement of the form run
P(X,init,chTerm,chTerm_ex1,...) (where X is either _pid or parent, in case of asyn-
chronous forks) included in the actions, the pid of the newly-instantiated process is stored
in a temporary variable (pidTemp = run P(...)) and a statement to keep track of the
process hierarchy is added (ChildrenMatrix[X].children[pidTemp]=1). Moreover,
each option sequence takes care of setting the state variable to the corresponding tran-
sition’s target and setting the �ags HasFired, HasExecuted, and DescendantExecuted
to true (lines 32–33). An additional option sequence, enabled only when none of the transi-
tions is enabled, takes care of passing the token to the process’ children. This is necessary
only if the process has not executed directly during the current step. After the selection
construct, the value in the state variable is stored in the nextState variable and state is
set to backProp. Before ending the main repetition construct, two other option sequences
are added to model DescendantExecuted’s backpropagation and the restoration of the
intended state value before the next phase or step. The �rst one (line 52-53) is executable
if state == backProp, DescendantExecuted is set, and didBackProp is unset. The
didBackProp �ag is used to make sure that this option sequence is �red at most once
per phase. The second one (line 55-56) is needed to restore state to a meaningful value
before the next phase or step.

Listing 2.12 shows a Promela encoding for the Engine process and concludes the
speci�cation. Engine, after declaring local variables and channels required for termination
synchronization, starts an instance of the Main process (line 5) and registers it as its child
(line 6). Notice that the Main process won’t be able to perform any transition until it
has received a token. Engine then starts a new step by executing the sequence labelled

Chapter 2 - Automatic test case generation from Dynamic State Machines 54

Listing 2.11 DSTM encoding schema – part 2: �at machine to proctype
1: proctype M(pid parent ; mtype initial ;chan chTerm ;chan chTerm_ex) {
2: bit didBackProp = 0; byte i;
3: // declare channels for termination synch. with children here
4: mtype state=initial , nextState ;
5:
6: do
7: // for each state S ∈ Ni ∪ Eni
8: :: (state == S && HasToken [_pid]) -> atomic {
9: HasToken [_pid]=0;

10: didBackProp =0;
11: if
12: // for each trans. t with Src1(t) = S, Trg1(t) = T, Dec1(t) = 〈ξ ,ϕ,α〉
13: :: (ξ && ϕ && ! descendantExecuted [_pid]) ->
14: α; state = T; HasFired =1;
15: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
16: // other transitions here
17: :: else -> //no transition is executable
18: if
19: :: (! HasExecuted [_pid]) ->
20: // if this proc did not exec. in this step
21: for (i : 0 .. MAX_PROC -1) { // pass token to children
22: if
23: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
24: :: else ->skip;
25: fi;
26: }
27: :: else ->skip;
28: fi;
29: fi;
30: nextState = state; state = backProp ;
31: }
32: // other states here
33: // handle upwards propagation of descendantExecuted
34: ::(state == backProp && descendantExecuted [_pid] && ! didBackProp)
35: -> { didBackProp = 1; descendantExecuted [parent] = 1 }
36: // handle original state restoring after backProp
37: ::(state == backProp && updateState) ->
38: { state = nextState ; didBackProp =0 }
39:
40: od unless (chTerm ?[1] || dyingPid [parent]) -> {
41: chTerm ?1; dyingPid [_pid]=1
42: }
43: }

Chapter 2 - Automatic test case generation from Dynamic State Machines 55

Listing 2.12 DSTM encoding schema – part 3: the Engine proctype
1: active proctype Engine () {
2: pid PidMain ; byte i;
3: chan chTerm_Main = [1] of {bit };
4: chan chTerm_Main_exit = [1] of {bit };
5: PidMain = run Main(_pid ,initial , chTerm_Main , chTerm_Main_exit);
6: ChildrenMatrix [_pid]. children [PidMain]=1;
7:
8: nextStep : // starts a new step
9: atomic {

10: // handle external channels management
11: updateState =0
12: HasFired =0;
13: isFirstDescent =1;
14: for (i : 0 .. MAX_PROC -1){
15: HasExecuted [i]=0;
16: descendantExecuted [i]=0;
17: HasToken [i] = ChildrenMatrix [_pid]. children [i];
18: }
19: }
20: goto waitTimeout ;
21:
22: nextPhase : // starts a new phase in the current step
23: atomic {
24: updateState =0;
25: HasFired =0;
26: for (i : 0 .. MAX_PROC - 1){
27: // give token to engine ’s children
28: HasToken [i] = ChildrenMatrix [_pid]. children [i];
29: }
30: isFirstDescent = 0; //It ’s at least the second one
31: }
32: goto waitTimeout ;
33:
34: waitTimeout :
35: do
36: :: timeout -> // deadlock
37: if
38: :: (! HasFired && isFirstDescent) -> goto abort;
39: :: (! HasFired && ! isFirstDescent && ! updateState) ->
40: updateState = 1;
41: :: (! HasFired && ! isFirstDescent && updateState) ->
42: goto nextStep ;
43: :: (HasFired && ! updateState) -> updateState = 1;
44: :: (HasFired && updateState) -> goto nextPhase ;
45: fi;
46: od;
47:
48: abort :
49: dyingPid [_pid]=1;
50: }

Chapter 2 - Automatic test case generation from Dynamic State Machines 56

Listing 2.13 Coverage-requiring never claim
1: never {
2: never_step :
3: if
4: :: (LastState ==S) -> goto end_never
5: // resp. (LastTransition ==t) -> goto end_never
6: :: else -> goto never_step
7: fi;
8: end_never : skip
9: }

nextStep (lines 8–20). This sequence performs management operations on external
channels, properly initializes the �ags and then passes the token on to the Main process
and to its siblings, if any (line 17). After that, with goto waitTimeout at line 20, Engine
starts the waitTimeout sequence, where it blocks until the system reaches a deadlock
state. Once a deadlock occurs, the selection construct in lines 37–45 models the choices
already detailed in point (iv) at page 51. The nextPhase sequence, as its name suggests,
takes care starting a new phase by reinitializing �ags and passing the token again to the
main process and its siblings. The abort sequence just marks Engine’s as dying and this
has a ripple e�ect causing the termination of all processes (see line 40 in Listing 2.11). A
complete example of Promela mapping for the counting DSTM model detailed in Figure
1.1 and in Table 1.1 is given in Appendix A.

2.5 Test case generation

In this section a procedure to generate test cases covering speci�c states or transitions
from the Promela encoding of a DSTM model is discussed. The main intuition is to
translate a state (or transition) coverage request to a never claim, and then use Spin
to check if there exists a run satisfying the coverage request. If such run exists, the
Spin-generated trail �le can be inspected in simulation mode to generate the required
test case, otherwise the state/transition is proved unreachable.

A coverage request can be translated to a never claim quite simply as follows. Two
additional global, mtype typed, variables LastState, LastTransition are introduced
in the Promela speci�cation, along with the necessary mtype declarations for transition
names. Those variables are then updated every time a transition �res so that they always
hold respectively the value corresponding to the latest entered state and to the latest
�red transition. After these changes, the never claim corresponding to a certain state or
transition coverage request is as simple as the one shown in Listing 2.13.

–3–

Reasoning about Hierarchical

Concurrent Computations with

Interrupts

Contents: 3.1 Hierarchical Temporal Logic with Interrupts. 3.2 Communicating Structured Au-

tomata with Interrupts. 3.3 Deciding CHA
E
emptiness. 3.4 Satis�ability of HLTL

E
L
over hierar-

chical computations. 3.5 HLTL
E
L
Model Checking.

The DSTM formalism, as discussed throughout Chapter 1, models hierarchical con-
current systems whose global state is described by tree-like structures like the one in
De�nition 9. Unlike other formalisms such as Communicating Structured Systems, orig-
inally introduced in [22], DSTM is also capable of modelling interrupts, i.e. the abrupt
termination of computation subtrees of arbitrary height when an interrupting event
occurs.

This chapter presents, in Section 3.1, Hierarchical Linear-time Temporal Logic with
Interrupts (HLTLE), an extension of the well-known Linear-time Temporal Logic (LTL)
[23] designed to express linear properties of hierarchical interrupting systems. A concrete
instantiation HLTLE semantics on Communicating Structured Automata with Interrupts
(CSAE) is then given in Section 3.2. After that, Section 3.3 shows a decision procedure for
the emptiness problem on CSAE, and Section 3.4 provides an automata-based solution to
the satis�ability problem of the local fragment of HLTLE. Finally, in Section 3.5, a model
checking procedure for CSAE models against HLTLE speci�cation is provided.

3.1 Hierarchical Temporal Logic with Interrupts

In [24], Benerecetti et al. introduced Hierachical LTL (HLTL), a novel extension of the
classic Linear-time Temporal Logic (LTL) designed to express linear properties of hi-
erarchical systems. As known, LTL allows for reasoning about in�nite sequences of

57

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 58

unstructured (�at) states. HLTL, on the other hand, allows for reasoning about sequences
of tree-structured states and is able to explicitly reference the tree-like structure of each
state. The main intuition behind HLTL is to use classic LTL operators to reason about the
evolution of a given module, while additional operators are used to contextualize formulae
in the hierarchy of activated modules. A HLTL formula is locally evaluated with regard
to a context (i.e. a given module, corresponding to a vertex in the tree-like hierarchical
structure of the current state), and the context can change during the evaluation of a
formula by moving along both the vertical and the horizontal dimension. The vertical
dimension is related to the hierarchy (caller/called relations), while the horizontal one is
related to concurrency (left/right sibling in the tree).

Suppose that the current context is a vertex t , corresponding to the state of a given
module committed to a call, which is to say that t has children (the modules it invoked)
in the current state. It is possible to express the fact that the formula ϕ is required to hold
in the i-th child of t by means of the formula ↓i(ϕ). Notice that in HLTL it is possible
to navigate the vertical dimension only downwards. If the context t has siblings in the
current state (i.e. is executing concurrently with other modules as a result of a call
operation), then it is possible to express the fact that the formula ϕ is required to hold in
its left (resp. right) sibling with the formula←(ϕ) (resp.→(ϕ)).

These vertical and horizontal displacement operators can be freely combined with
linear temporal operators that allow for expressing behavioural properties of a module
with regard to the temporal dimension. HLTL de�nes two di�erent versions of each linear
temporal operator: a local version with subscript l and a global one with subscript д.
The local next Xl , for example, captures a local notion of successor, in which the context
is directly involved in the system’s evolution. The global next Xд, on the other hand,
corresponds to a notion of successor sensitive to any evolution a�ecting the subtree
rooted in the current context. These di�erent interpretations of next are formalized in
De�nition 13.

In this section, HLTL itself is extended with an additional interrupting next operator,
in symbols XE, which can be used to explicitly predicate about interrupts. Considering
the context t described above, the formula XE(ϕ) holds in t i� the module corresponding
to t locally performs an interrupting transition resulting in a state in which ϕ holds. The
resulting logic is called Hierarchical Temporal Logic with Interrupts (HLTLE).

De�nition 11 (HLTLE syntax). HLTLE formulae are inductively de�ned as follows:

ϕ F > | p ∈ P | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ↓n(ϕ) | ←(ϕ) | →(ϕ) | Xx ϕ | XE ϕ | ϕ Ux ϕ | ϕ Rx ϕ,

where P is a set of atomic propositions and x ∈ {l,д}. HLTLEL denotes the local fragment,
having only operators with x = l .

A HLTLE formula is interpreted over interrupting hierarchical words, which are
sequences of tuples consisting in a labelled trees, a frontier and a set of interrupting
vertices. An interrupting hierarchical word can be seen as a computation of a hierarchical
modular system with interrupts, with each symbol’s labelled tree representing the current

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 59

state of the modular system. A frontier is a subset of the vertices in the labelled tree and
represents those modules which are synchronously participating in the computation step
whose target is the next symbol in the hierarchical word. The set of interrupting nodes is
a subset of the frontier and includes only those modules which are participating in the
current computation step by performing interrupting transitions. If a module in the tree
descends from a module belonging to the frontier, it will be deallocated in the next system
state (because it either has terminated or is interrupted by its ancestor in the frontier). If
a module does not belong to the frontier and is not a descendant of a node belonging to
the frontier, then it is not a�ected at all by the current computation step.

Before formalizing these concepts it is necessary to introduce some new notation.
Much like DSTM control trees in Section 1.3.3, a tree T ⊆ �∗ is de�ned as a pre�x-closed
set of �nite sequences of natural numbers, with the empty sequence being denoted by
ε . Furthermore, for any set of vertices S ⊆ T , the set of children of S is de�ned as
chl(S) = {t · i ∈ T | t ∈ S ∧ i ∈ �}. For a singleton set {t}, the abbreviated notation
chl(t) shall be used. The set of leaves of T is de�ned as lvs(T) = {t ′ ∈ T | chl(t) = �},
i.e. the set of those vertices having no child. The set of descendants of S is de�ned as
des(S) = {t · t ′ ∈ T | t ∈ S ∧ t ′ ∈ �∗}.
De�nition 12 (Interrupting hierarchical word). An interrupting hierarchical word over
the alphabet Σ is a sequence of the form

〈(T0,v0), Fr0, In0〉, 〈(T1,v1), Fr1, In1〉, . . . , 〈(Ti,vi), Fri, Ini〉, . . .

such that, for all i ≥ 0:

(i) (Ti,vi) is a labelled tree over Σ, with vi : Ti 7→ Σ;

(ii) the frontier Fri ⊆ Ti , and Fri ∪ (Ti \ Des(Fri)) ⊆ Ti+1;
(iii) for all t ∈ (Ti \ Des(Fri)), vi(t) = vi+1(t);
(iv) the interrupting vertices set Ini ⊆ Fri and Ini ∩ lvs(Ti) = �.

In the above de�nition, (ii) requires that, for each symbol in the interrupting hierar-
chical word, the frontier is a subset of vertices of the labelled tree and that all vertices in
the labelled tree which either belong to the frontier or do not have a node belonging to
the frontier as a proper pre�x, are also vertices of the next symbol’s tree. Moreover, (iii)
requires that the labelling for the vertices which do not belong to the frontier and do not
descend from nodes belonging to it, remains unchanged, accordingly with the fact that in
a concurrent hierarchical system modules not performing any action are expected not to
change their state. Point (iv) guarantees the well-formedness of the interrupting vertices
set, i.e. that the set of vertices participating in the current step by performing interrupting
transitions is included in the set of vertices participating in the current computation
step and consists solely of vertices having at least one child, as child-less vertices cannot
perform interrupting transition since they have no child module to interrupt.

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 60

When dealing with sequences of states, the standard interpretation of linear temporal
operators has a global character, i.e. the concept of next state is relative to the overall
system state. Given a context c = 〈(Ti,vi), t〉, with t ∈ Ti , the standard next from c would
single out as the successor the context 〈(Ti+1,vi+1), t〉, if t ∈ Ti+1. With �at, unstructured
states, this classic interpretation is perfectly adequate, but it falls short when dealing with
sequences of structured states of concurrent hierarchical modular systems, as it is not
able to fully capture the concurrent nature of computations. In a concurrent hierarchical
computation, the step leading from 〈(Ti,vi), t〉 to 〈(Ti+1,vi+1), t〉 could not involve at all t or
its descendants. To better capture the concurrent and hierarchical nature of computations,
as already anticipated, two additional interpretations of linear temporal operators are
introduced.

De�nition 13 (Interpretations of next). Given an interrupting hierarchical word

ξ = ξ0, ξ1, . . . , ξk, . . . ,

with ξi = 〈(Ti,vi), Fri, Ini〉, for all i ≥ 0 and t ∈ Ti :
• the global Nextд(ξi, t) is the hierarchical computation symbol ξj (if any) such that
j > i is the least index such that t ′ ∈ Fr j−1, for some t ′ ∈ Tj−1 ∩ Des(t) and, for each
i < ` < j there is no pre�x t ′ of t with t ′ ∈ Fr` .

• the local Nextl (ξi, t) is the hierarchical computation symbol ξj (if any) such that
j > i is the least index such that t ∈ Fr j−1 and, for each i < ` < j there is no pre�x
t ′ of t with t ′ ∈ Fr` .

As usual, Next∗x (ξi, t), with x ∈ {l,д}, denotes the re�exive and transitive closure of
Next∗x (ξi, t) and is de�ned inductively as the set of hierarchical symbols such that:

(i) ξi ∈ Next∗x (ξi, t);
(ii) ξj ∈ Next∗x (ξi, t) i� ξj ∈ Nextx (ξk, t) and ξk ∈ Next∗x (ξi, t).

Note that, when the context is �xed in the root of the hierarchy, the global interpretation
of next is in fact the same as the classic interpretation.

Example 12 (An interrupting hierarchical word and the interpretations of next). Consider
the interrupting hierarchical word ξ = ξ0, ξ1 . . . , whose �rst �ve symbols are represented
in Figure 3.1. In the proposed depiction, each tree node is decorated with its labelling
and is drawn with a double circle if it belongs to the frontier. Vertices belonging to the
interrupting set are furthermore decorated with a lightning symbol. First of all, it is trivial
to check that ξ is indeed a well-formed interrupting hierarchical word as it satis�es all
the constraints in De�nition 12. In Sub�gures 3.1a and 3.1b, the dashed oriented edges
exiting tree vertices represent, respectively, the Nextl and the Nextд relations. In node ε
in ξ0, both the local and the global next map to ξ1’s root. In ξ1, nodes 1 and 2 belong to
the frontier and thus their local and global next single out nodes 1 and 2 in ξ2. Node ε

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 61

A

(ξ0)

B

P Q

(ξ1)

B

R S

T U

(ξ2)

B

V S

X Y

(ξ3)
E Z

(ξ4)

(a) The Nextl relation

A

(ξ0)

B

P Q

(ξ1)

B

R S

T U

(ξ2)

B

V S

X Y

(ξ3)
E Z

(ξ4)

(b) The Nextд relation

Figure 3.1: An interrupting hierarchical word decorated with both Nextl and Nextд

is not participating directly in the computation step leading from ξ1 to ξ2, and its local
next maps to symbol ξ4, accordingly to De�nition 13. Since its descendants 1 and 2 are
participating in the current step, ε’s global next maps to symbol ξ2. In ξ2, node 2 has no
local next but has a global next in symbol ξ3, as its descendants are participating in the
current computation step. As in ξ2, node ε does not participate directly to the current
computation step and its local and global next map, respectively, to symbols ξ4 and ξ3. In
the last computation step, node ε belongs to the set of interrupting modules and performs
an interrupting transition deallocating all of its descendants. Both its local and global
next map to symbol ξ4.

With the de�nition of interrupting hierarchical word and the interpretations of next
in place, it is now possible to formalize HLTLE semantics.

De�nition 14 (HLTL-i semantics). The satisfaction of an HLTL-i formula ϕ in node
t ∈ Ti at the i-th symbol of an interrupting hierarchical word ξ = ξ0, ξ1, . . . , ξk, . . . , with
ξi = 〈(Ti,vi), Fri, Ini〉, is de�ned recursively as follows:

• 〈ξi, t〉 � p i� p ∈ vi(t), with p ∈ P;

• Boolean connectives are de�ned as usual;

• 〈ξi, t〉 � ↓j ϕ i� t · j ∈ Ti and 〈ξi, t · j〉 � ϕ;

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 62

• 〈ξi, t〉 �←(ϕ) i� t = t ′ · j, with j > 1, and 〈ξi, t ′ · (j − 1)〉 � ϕ;

• 〈ξi, t〉 �→(ϕ) i� t = t ′ · j, t ′ · (j + 1) ∈ Ti , and 〈ξi, t ′ · (j + 1)〉 � ϕ;

• 〈ξi, t〉 � Xx (ϕ), with x ∈ {l,д}, i� there exists ξj such that ξj = Nextx (ξi, t) and
〈ξj, t〉 � ϕ.

• 〈ξi, t〉 � XE(ϕ) i� there exists ξj such that ξj = Nextl (ξi, t), 〈ξj, t〉 � ϕ and t ∈ Inj−1;
• 〈ξi, t〉 � ϕ Ux ψ , with x ∈ {l,д}, i� there exists ξj ∈ Next∗x such that 〈ξj, t〉 � ψ and,

for all ξk ∈ Next∗x , with i ≤ k < j, 〈ξk, t〉 � ϕ.

• 〈ξi, t〉 � ϕ Rx ψ , with x ∈ {l,д}, i� for all ξj ∈ Next∗x (ξi, t), if 〈ξj, t〉 2 ψ , then there
exists ξk ∈ Next∗x , with i ≤ k < j, such that 〈ξk, t〉 � ϕ.

A hierarchical word ξ satis�es a HLTLE formula ϕ, in symbols ξ � ϕ, if ϕ holds in the
word’s �rst symbol’s root, i.e. 〈ξ0, ε〉 � ϕ.

The following abbreviations will be used hereafter: ⊥ for ¬>; ϕ ⇒ ψ for ¬ϕ∨ψ ; Stopx
for ¬ Xx >, with x ∈ {l,д}, expressing the fact that the current context has no local or
global future. Derived temporal operators eventually Fx and globally Gx , with x ∈ {l,д},
can be de�ned as follows. Fx ϕ, requiring that in some future point in Next∗x ϕ holds, is
equivalent to > Ux ϕ. Gx ϕ, requiring for ϕ to hold in all points in Next∗x , is equivalent to
⊥ Rx ϕ.

Furthermore, the “interrupting” versions of all temporal operators, which consider
only interrupting transitions, can be de�ned by combining the interrupting next operator
with standard temporal operators. The interrupting until operator ϕ UEψ can be expressed
as [ϕ ∧ XE (ϕ ∨ψ)] Ul ψ . Similarly, the interrupting release operator ϕ REψ is equivalent to
ϕ Rl [ψ ∧ ((XE>) ∨ ϕ)]. The interrupting globally operator GE ϕ is equivalent to ϕ∧G (XE ϕ),
and the interrupting eventually operator FE ϕ as (XE>) Uϕ.

Example 13 (HLTLE formulae). Consider the interrupting hierarchical word ξ depicted
in Figure 3.1 and discussed in Example 12. It holds that 〈ξi∈{1,2,3}, ε〉 � XE Z , since in
each of these contexts, the local next 〈ξ4, ε〉 � Z and ε belongs to the set of interrupting
vertices in ξ3. The HLTLE formula ϕ = (A ∨ B) Uд(XE Z) is satis�ed by ξ , i.e. 〈ξ0, ε〉 � ϕ,
since there exists the symbol ξ1 in Next∗д(ξ0, ε) such that 〈ξ3, ε〉 � XE Z and for i ∈ {0, 1, 2},
〈ξi, ε〉 � (A∨B). The HLTLE formulaψ = Gд

((↓1(R)) ⇒ (↓2(Stopl))) , requires that, in each
state of the computation, if the �rst child of the primary module satis�esR, then the second
child has no local next. It holds that ξ � ψ . The HLTLE formula µ = Xl (↓1 (P ⇒→(Xl (S)))),
requiring that in the local next relative to its context, if the �rst child satis�es P , then its
right sibling has a local next satisfying S , is also satis�ed in ξ .

De�nition 15 (Negation-normal form (NNF) for HLTL formulae). An HLTL formula ϕ is
in negation-normal form if the negation operator ¬ is only applied to atomic propositions
and subformulae in {→>,←>, X>, XE>}.

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 63

Any HLTL formula can be transformed into an equivalent formula in NNF by “pushing”
the negations inwards. This is done by applying the following equivalences from left to
right as long as possible

¬¬ϕ ≡ ϕ
¬(ϕ ∨ψ) ≡ ¬ψ ∧ ¬ψ
¬(ϕ ∧ψ) ≡ ¬ψ ∨ ¬ψ
¬(ϕ Ux ψ) ≡ ¬ψ Rx ¬ψ
¬(ϕ Rx ψ) ≡ ¬ψ Ux ¬ψ
¬(Op(φ)) ≡ Op(¬φ) ∨ ¬Op>

with x ∈ {l,д}, Op ∈ {←,→, X, XE, ↓i∈�+}.

3.2 Communicating Structured Automata with Inter-

rupts

HLTLE allows to express linear properties of hierarchical words, which – as previously
discussed – can be seen as computations of possibly-interrupting concurrent hierarchical
systems, including DSTM speci�cations. This section provides a possible instantiation of
the concrete semantics of HLTLE in terms of Communicating Structured Automata with
Interrupts (CSAE), by extending the concrete semantics for HLTL given by Benerecetti
et al. in [24] in terms of Communicating Structured Automata. CSAE are simpler systems
than DSTM, yet maintain the most important characteristics of hierarchy, concurrency
and the possibility of interrupts, and therefore are better-suited for a preliminary study
like the one in this chapter.

Similarly to DSTM, control states in CSAE are partitioned into locations and boxes,
depending on whether the control state is re�ned by other machines. Locations, much
like DSTM, can be quali�ed as entering or exiting and each CSAE has at least one entering
location. A transition entering a box is interpreted as a procedure call activating a
sequence of CSAE, possibly containing multiple instances of the same automaton, which
after activation run synchronously in parallel. Such sequence of automata to be activated
is associated with the box by means of a re�nement function β . A transition entering a box
b speci�es, for each of the automata in β(b), an entering state, in symbols (b, en1, . . . , enk).
A synchronous return from a box call speci�es, for each of the automata associated
with box, the corresponding exiting state (b, ex1, . . . , exk). A return by interrupt, on the
contrary, does not specify a sequence of exiting states. In other words, the source of a
transition in a CSAE is either a location or a box (in case of return by interrupt) or a tuple
of the form (b, ex1, . . . , exk) (in case of synchronous return), while the target of a CSAE

transition is either a location or a tuple of the form (b, en1, . . . , enk). Parallel components
re�ning a common box synchronize on communication symbols from a set Γ, i.e. if one

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 64

of the components performs a transition labelled with the synchronization symbol γ ∈ Γ,
then all other components must be able to perform a transition labelled with γ . Active
components called by di�erent boxes, on the other hand, need not to communicate and
evolve accordingly to an interleaving semantics.

More formally, given a set Σ of input symbols, a set Γ of synchronization symbols,
a set of states Q and a set of boxes B ⊆ Q , the class CSAE(Σ, Γ,Q,B) of Communicating
Structured Automata with Interrupts over Σ, Γ, Q , B is de�ned as follows.

De�nition 16 (Communicating Structured Automata with Interrupts (CSAE) [24]). Let
S = Q ∪ (B ×Q+) and L , Q \B be, respectively, the sets of structured states and locations.
The class of Concurrent Structured Automata with Interrupts over Σ, Γ, Q , B, is the
maximal set

CSAE(Σ, Γ,Q,B) ⊆ 2Q ×2L×2L×2B ×(B ⇀ CSA(Σ, Γ,Q,B)+)×(S ×Σ×Γ ⇀ 2S)×2Q ×22Q

such that each tuple A = 〈QA , EnA , ExA ,BA , βA , δA , FA ,RA 〉 ∈ CSAE(Σ, Γ,Q,B) sat-
is�es the following:

(i) the sets of entering and exiting locations are disjoint subsets of the set of locations
belonging to QA , in symbols EnA ∪ ExA ⊆ QA ∩ L and EnA ∩ Ex A = �;

(ii) the box re�nement function βA is such that its domain is BA ;

(iii) the non-deterministic transition function δA is a partial function SrcA ×Σ × Γ ⇀
2TrgA , where:

SrcA , (L \ ExA) ∪
(
BA ×b

|β(b)|∏
i=1

ExβA (b)i

)
∪ BA

TrgA , (L \ EnA) ∪
(
BA ×b

|β(b)|∏
i=1

EnβA (b)i

)
;

(iv) The acceptance conditions FA ⊆ QA and RA ⊆ 2QA .

The semantics of acceptance conditions is formally de�ned in De�nition 23.

Example 14 (A simple CSAE). Consider the CSAE A depicted in Figure 3.2. The proposed
graphical formalism is very similar to the one used with DSTM: entering nodes are depicted
as circles, locations as rounded rectangles, boxes as rectangles and exiting locations as
crossed-out circles. Structured states are depicted as entering (resp. exiting) nodes placed
on the corresponding box’s border and suitably labelled with a sequence of entering (resp.
exiting) nodes of the automata instantiated by the box. Moreover, each state is labelled with
its name, and each transition, represented with an oriented edge connecting the source and
target (structured) states, is decorated with a semicolon-separated couple consisting of an
input symbol and a synchronization symbol. Interrupting transitions are decorated with a

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 65

B

P
S

Q

(B, R, R) (B,T ,T)

a;γ

b;γ
a;γ

a;γ

b;γ

b;γ

a;γ
A

Y

X
R Ta;γ

b;γ

a;γ

b;γb;γ a;γ

B

Figure 3.2: A simple CHAE

brief zig-zag segment. Formally, A = 〈QA , EnA , ExA , BA , βA , δA , FA , RA 〉, with: the
set of states QA = {S, P,Q,B}; the set of entering locations EnA = {S}; the set of exiting
locations ExA = �, which is not surprising since A is a top-level automaton; the set of
boxes BA = {B}; the re�nement function βA = {(B, 〈B,B〉)}, i.e. B instantiates two
instances of the B automaton; δA = {(〈S,a,γ 〉, P) , (〈S,b,γ 〉, (B, 〈R,R〉)) , (〈B,a,γ 〉, P) ,
(〈〈B,T ,T 〉,a,γ 〉,Q) , (〈P,a,γ 〉, P) , (〈P,b,γ 〉,Q) , (〈Q,b,γ 〉,Q)}; FA = {B}; RA = {{Q}}.
In A , the transition leading from the box B to the location P is an interrupting transition.
The box B is re�ned by two instances of the B automaton, which is formalized as follows.
B = 〈QB, EnB, ExB,BB, βB, δB, FB,RB〉, with: QB = {R,X ,Y ,T }; EnB = {R}; ExB =

{T }; BB = �; βB = �; δB = {(〈R,a,γ 〉,X) , (〈R,b,γ 〉,Y) , (〈X ,a,γ 〉,T) , (〈X ,b,γ 〉,Y) ,
(〈Y ,a,γ 〉,X) , (〈Y ,b,γ 〉,T)}; FB = �; RB = {{Y }}. A and B belong to the class of CSAE

over the alphabet Σ = {a,b}, the synchronization symbols Γ = {γ }, the set of states
{S, P,Q,B,R,X ,Y ,T } and the set of boxes {B}.

Much like DSTMs (see Subsection 1.3.3), the complete con�guration of a CSAE in a
given time instant is encoded by a tree-like structure, associating to each active module
(vertex in the tree) its current control state and the corresponding automaton. Such
structure, called con�guration tree, is formalized in the following de�nition.

De�nition 17 (Con�guration tree [24]). Given a tree T ⊆ �∗, a function r : T 7→ Q
labelling each vertex of the tree with states, and a function m : T 7→ CSA(Σ, Γ,Q,B)
associating to each point in T a machine, the tuple 〈T , r ,m〉 is a con�guration tree if the
following conditions are satis�ed:

(i) for all t · i ∈ T and j < i with i, j ∈ �+, t · j ∈ T ;

(ii) for all t ∈ T , if r (t) ∈ Bm(t) then t · k ∈ T with k = |βm(t)(b)| and t · k + 1 < T ;

(iii) for all t · i ∈ T , r (t) ∈ Bm(t) and m(t · i) = (
βm(t)(t)

)
i ;

(iv) for all t ∈ lvs(T), r (t) ∈ Qm(t) ∩ L.

In the above de�nition, constraint (i) requires for the tree to be well-formed, i.e. if a
vertex has a k-th child, then it also has i-th children, for i ∈ {1, . . . ,k − 1}. Constraints

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 66

(ii) and (iii) ensure that only box-labelled vertices have children, that each box has exactly
as many children as the number of automata it instantiates, and that each i-th child
corresponds to the i-th automata associated with the box by the re�nement function.
Finally, constraint (iv) requires that all leaves in the tree are labelled with locations, i.e.
leaves cannot be labelled by boxes.

A computation step of a CSAE from one con�guration tree to another involves a
transition from all the nodes of a maximal set of children of some node t or from the
root of the tree. This synchronous communication model among concurrently executing
modules re�ning a common box is enforced by the de�nition of frontier. In what follows,
after de�ning the siblings relation between elements of a con�guration tree, the notion of
CSAE frontier is formalized.

Given two vertices t1, t2 in a treeT , the sibling relation S holds between them (t1S t2)
if there exists a t ∈ T such that t1 = t · i and t2 = t · j for some i, j ∈ �, i , j. The set
of maximal sets of siblings in a tree T is de�ned as MaxSib(T) = {S ⊆ T | ∀t1 ∈ S, t2 ∈
T .t2 ∈ S ⇔ t1S t2}.
De�nition 18 (Frontier of a con�guration tree). Given a con�guration tree 〈T , r ,m〉, its
frontier is de�ned as the collection of maximal sets of siblings such that, for each set
of siblings, each component t is able to perform transitions, i.e. the predicate canAct(t)
holds. In symbols:

Front(〈T , r ,m〉) , {S ∈ MaxSib(T) | ∀t ∈ S . canAct(t, 〈T , r ,m〉)} .
A component t ∈ T is allowed to perform transitions if the following conditions hold:

(i) t is not in an exiting state of the corresponding machine, i.e. r (t) < Exm(t);
(ii) t can either perform a synchronous transition or an interrupting one, which is to

say that at least one of the following holds:

(a) the children of t are all leaves and are labelled with exiting locations of the
corresponding machines. Notice that this condition is also trivially satis�ed
by components whose state is a location, i.e. that have no children;

(b) t is labelled with a boxb of the corresponding machine and admits interrupting
transitions, which is to say that there exists an input symbol σ ∈ Σ and
a synchronization symbol γ ∈ Γ such that (b,σ ,γ) belongs to the domain
of the machine’s transition function dom(δm(t)). In this case, the predicate
interruptible(t, 〈T , r ,m〉) holds.

In symbols, the canAct and the interruptible predicates are de�ned as follows.

canAct(t, 〈T , r ,m〉) , r (t) < Exm(t) ∧
[(

chl(t) ⊆ lvs(T) ∧ ∀u ∈ chl(t).r (u) ∈ Exm(t)
) ∨

interruptible(t)
]

interruptible(t, 〈T , r ,m〉) , (
r (t) ∈ Bm(t) ∧ ({r (t)} × Σ × Γ) ∩ dom(δm(t)) , �

)

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 67

Intuitively, each non-empty set of siblings belonging to the frontier identi�es a set of
modules that can perform a transition in the automaton.

De�nition 19 (CSAE run). A run (interrupting hierarchical computation) π of a CSAE

A over an interrupting hierarchical word ξ = 〈(T0,v0), Fr0, In0〉, 〈(T1,v1), Fr1, In1〉, . . . ,
〈(Ti,vi), Fri, Ini〉, . . . is a sequence

π = 〈T0, r0,m0〉
〈(T0,v0),Fr0,In0〉−−−−−−−−−−−→ . . . 〈Ti, ri,mi〉

〈(Ti ,vi),Fri ,Ini 〉−−−−−−−−−−−→ . . .

such that, for every i ≥ 0:

(i) Fri ∈ Front(〈Ti, ri,mi〉);
(ii) ∀t ∈ Ini , interruptible(t, 〈Ti, ri,mi〉) holds;

(iii) there exists γ ∈ Γ such that:

(a) for all t ∈ Ini , ri+1 ∈ δmi (t) (ri(t),vi(t),γ);
(b) for all t ∈ Fri \ Ini , if r (t) < Bmi (t) then ri+1 ∈ δmi (t) (ri(t),vi(t),γ), else ri+1 ∈

δmi (t)
((
ri(t),

∏
t ′∈chl(t) ri(t ′)

)
,vi(t),γ

)
(iv) for all t ∈ Ti \ (Des(Fri)), ri+1(t) = ri(t) and mi+1(t) = mi(t);
(v) for all t ∈ Ti+1 \ (Ti \ Des(chl(Fri))), ri+1(t) ∈ Enmi+1(t);

Constraint (i) requires for the frontier of the hierarchical word to belong to the frontier
of the source con�guration tree. This enforces the synchronous communication model
amongst siblings. Note that the hierarchical word described in Example 12 and depicted in
Figure 3.1 is not a valid word for CSAE, since in ξ2 the frontier consists in non-sibling com-
ponents. Constraint (ii) requires that each component belonging to the interrupting com-
ponents set Ini is actually able to perform an interrupting transition, i.e. the interruptible
predicate holds in that component in the current con�guration tree. Constraint (iii) en-
forces synchronization amongst siblings by requiring that each component belonging to
the frontier can perform a transition labelled with a common communication symbol γ .
Moreover, constraint (iii) de�nes the next con�guration tree’s labelling for the nodes be-
longing to the frontier accordingly to the transition function. In particular, for components
t being in the interrupting set or being labelled by locations, the next con�guration tree’s
labelling ri+1(t) must be one of the values in δmi (t) (ri(t),vi(t),γ). For box-labelled com-
ponents belonging to the frontier but not to the interrupting set, the next con�guration
tree’s labelling ri+1(t) is required to be in δmi (t)

((
ri(t),

∏
t ′∈chl(t) ri(t ′)

)
,vi(t),γ

)
.

Example 15 (On CSAE computations). This example shows di�erent runs of the CSAE A
described in Example 14 over several interrupting hierarchical words constructed over the
symbols in Figure 3.3. Consider the hierarchical word ξ 1 = (ξa)ω . It produces the in�nite
run π 1 = 〈T = {ε}, r = {(ε, S)},m = {(ε,A)}〉, (〈T = {ε}, r = {(ε, P)},m = {(ε,A)}〉)ω .

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 68

The interrupting hierarchical word ξ 2 = ξa, (ξb)ω induces the run π 2 = 〈T = {ε}, r =
{(ε, S)},m = {(ε,A)}〉, 〈T = {ε}, r = {(ε, P)},m = {(ε,A)}〉, (〈T = {ε}, r = {(ε,Q)},m =
{(ε,A)}〉)ω .

The word ξ 3 = ξb, (ξc, ξd)ω induces the run π 3 in which the call to the box B never
returns. Formally, the run π 3 = 〈T = {ε}, r = {(ε, S)},m = {(ε,A)}〉, 〈T = {ε, 1, 2}, r =
{(ε,B),(1,R),(2,R)},m = {(ε,A), (1,B), (1,B)}〉, (〈T = {ε, 1, 2}, r = {(ε,B),(1,X),(2,Y)},
m = {(ε,A), (1,B), (1,B)}〉, 〈T = {ε, 1, 2}, r = {(ε,B), (1,X), (2,Y)},m = {(ε,A), (1,B),
(1,B)}〉)ω .

The word ξ 4 = ξb, ξ
2
c , ξe, (ξb)ω induces the run π 4 in which there is a synchronous

return from the call to the box B, while the word ξ 5 = ξb, ξc, ξ f , (ξa)ω induces the run π 5

in which there is a return by interrupt from the call to B. For the sake of brevity, π 4 and
π 5 are not described formally. All of the runs in this example are depicted in Figure 3.4, in
which every node t of a con�guration treeTi is labelled with ri(t) and furtherly decorated
with mi(t), and consecutive con�guration trees in a run are linked by arrows decorated
with the corresponding hierarchical word symbol inducing the computation step.

Before formalizing the notion of acceptance for an in�nite run, it is necessary to
introduce some preliminary de�nitions.

De�nition 20 (Still points in an in�nite run [24]). Given a run π =
∏

j≥0〈Tj, rj,mj〉, a
point t ∈ �∗ is said to be still in π if, starting from a certain instant i onwards, it occurs
in each con�guration tree Tk≥i , and is never involved in a transition. Formally, the set of
still points in π is de�ned as follows:

Still(π) , {t ∈ �∗ | ∃i ∈ [0, |π |).∀j ∈ [i, |π |).t ∈ Tj \ Fr j}.
De�nition 21 (Continuous points in an in�nite run [24]). Given a run π =

∏
j≥0〈Tj, rj,mj〉,

a point t ∈ �∗ is continuous in π if it either is the root ε or is a child of a still point. Formally,
the set of continuous points in π is de�ned asCont(π) , {ε}∪{t = t ′·i ∈ �∗ : t ′ ∈ Still(π)}.

A continuous point is eventually associated with a component that never returns,
since its father, from a certain instant onwards, never performs transitions. A still point
is always continuous, but the opposite is not necessarily true. In run π3 discussed in
Example 15, for example, nodes 1 and 2 are continuous but are not still. Furthermore,
notice that the initial component – i.e. the one being at the root of the hierarchy – is
always continuous as it is required to run on in�nite hierarchical words and cannot return.

De�nition 22 (Recurrent points in an in�nite run [24]). Given a run π =
∏

j≥0〈Tj, rj,mj〉,
a point t ∈ �∗ is recurrent in π if it is continuous but not still. Formally, the set of recurrent
points in π is de�ned as Rec(π) , Cont(π) \ Still(π).

The set of control states occurring in�nitely often at node t along an in�nite compu-
tation π is de�ned as Inf π (t) ,

{
q ∈ Q | ∃∞j ∈ �.rj(t) = q ∧ t ∈ Tj

}
. Note that Inf π (t) is

always a singleton when t ∈ Still(π).
De�nition 23 (Acceptance of an in�nite CSAE run [24]). An in�nite run π of a CSAE is
accepting if the following conditions are ful�lled:

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 69

a

(ξa)

b

(ξb)

a

(ξc)

a b

a

(ξd)

b a

b

(ξe)

a b

a

(ξf)

a b

E

Figure 3.3: Hierarchical word symbols

ξa ξa ξa

ξa ξb ξb ξb

ξb ξc ξd ξc ξd

ξb ξc ξc ξe ξb

ξb ξc ξf ξa ξa

Sπ 1 A

(π 1
0)

P

(π 1
1)

A
P

(π 1
2)

A

Sπ 2 A

(π 2
0)

P

(π 2
1)

A

Q

(π 2
2)

A
Q

(π 2
3)

A

Sπ 3 A

(π 3
0)

B

(π 3
1)

A

R
B

R
B

B

(π 3
2)

A

X
B

Y
B

B

(π 3
3)

A

Y
B

X
B

B

(π 3
4)

A

X
B

Y
B

Sπ 4 A

(π 4
0)

B

(π 4
1)

A

R
B

R
B

B

(π 4
2)

A

X
B

Y
B

B

(π 4
3)

A

T
B

T
B

Q

(π 4
4)

A

Sπ 5 A

(π 5
0)

B

(π 5
1)

A

R
B

R
B

B

(π 5
2)

A

X
B

Y
B

P

(π 5
3)

A
P

(π 5
4)

A

Figure 3.4: Runs on the hierarchical words in Example 15

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 70

(i) for each recurrent node t ∈ Rec(π) and for each accepting set Ri ∈ Rm(t), it holds
that Inf π (t) ∩ Ri , �;

(ii) for each still node t ∈ Still(π), it holds that Inf π (t) ⊆ Fm(t).

Note that, in a CSAE A , the recurrent acceptance sets in RA , correspond to a general-
ized Büchi condition [3, § 4.3.4] on recurrent nodes. As usual, L(A) denotes the set of all
interrupting hierarchical words accepted by A .

Example 16 (On the acceptance of CSAE runs). Consider the CSAE A detailed in Example
14 and its runs π i , i ∈ {1, . . . , 5} discussed in Example 15. Recall that FA = {B}, RA =

{{Q}}, FB = �; RA = {{Y }}. In π 1 there are no still points and ε is a continuous and
recurrent point. Since the only state being visited in�nitely often in ε is P and the only
recurring accepting set is {Q}, π 1 rejects the interrupting hierarchical word ξ 1. Conversely,
π 2 accepts ξ 2 since Inf π 2(ε) = {Q}. In the run π 3, node ε is still and continuous (and not
recurrent), since from π 3

1 onwards it is never involved in any transition. Points 1 and 2,
being children of a still node, are by de�nition continuous and, since they are in�nitely
often involved in transitions, recurrent. Since Inf π 3(ε) = {B} is included in FA and, for all
R ∈ RB , the intersection Inf π 3(n) ∩ R = {Y }, with n ∈ {1, 2}, π 3 is an accepting run. Run
π 4 has no still nodes and Cont(π 4) = Rec(π 4) = {ε}, and, much like π 1, is an accepting
run since for each R ∈ RA Inf π 4(ε) ∩ R = {Q}. On the contrary, π 5, which similarly has
no still nodes and Cont(π 4) = Rec(π 4) = {ε}, is a rejecting run since there exists a R ∈ RA

such that Inf π 5(ε) ∩ R = �.

As de�ned in this section, CSAE allow for modelling unrestricted recursive systems,
but HLTLE is not able to predicate over unbounded hierarchical structures. For this reason,
as in [24], in what follows the focus is restricted on a subclass of CSAE allowing only
for hierarchies of bounded depth. This subclass is called Communicating Hierarchical
Automata with Interrupts (CHAE) and is de�ned using strati�cation of calls as follows.

De�nition 24 (Communicating Hierarchical Automata with Interrupts (CHAE)). The
class of Communicating Hierarchical Automata with Interrupts over Σ, Γ, Q , B, is de�ned
as follows:

CHA(Σ, Γ,Q,B) =
⋃
i≥0

CHAi(Σ, Γ,Q,B) ⊂ CSA(Σ, Γ,Q,B)

where:

(i) CHA0(Σ, Γ,Q,B) , CSA(Σ, Γ,Q,�);
(ii) CHAi+1(Σ, Γ,Q,B) =

{
A

�� rng(βA) ⊆ CHAi(Σ, Γ,Q,B)+
}
;

Intuitively, (i) is the base case of the inductive de�nition and de�nes the automata having
depth 0 as the ones containing no box. (ii) inductively de�ned the automata of depth
i > 0 as the ones having exclusively boxes re�ned only by automata having depth strictly
lower than i .

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 71

Algorithm 1 CHA emptiness

signature Emptiness : CHA+ →A InOut(A)
1: function Emptiness(A)
2: return reach(prod(Unbox(A)));
3: end function

signature Unbox CHA+ → CFA+

1: function Unbox(A)
2: A ′← ε
3: for 0 ≤ i < |A | do
4: A ′← A i

5: for all b ∈ BA ′ do

6: I ← Emptiness(βA ′(b))
7: QA ′ ← QA ′ ∪ ({b} × I) . add summary states
8: BA ′ ← BA ′ \ {b} . remove b from the set of boxes
9: βA ′ ← δA ′�BA ′ . restrict the box re�nement function

10: FA ′ ← acc(FA ′,b, I) . suitably enrich accepting states
11: RA ′ ← {acc(X ,b, I) | X ∈ RA ′} . suitably enrich accepting states
12: δA ′ ← trn(QA ′, βA ′, δA ′,b, I) . update the transition function
13: end for

14: A ′← A ′ ·A ′
15: end for

16: return A ′
17: end function

3.3 Deciding CHA
E

emptiness

This section provides a decision procedure to compute the emptiness of the language
accepted by the parallel composition of a sequence A of CHAE. The proposed procedure is
an extension of the one proposed in [24] for CHA and adapts the bottom-up summarization
technique well-known in the context of hierarchical machines. The procedure is described
in Algorithm 1. The algorithm takes as input a non-empty sequence of CHAE A =

{A1, . . . ,Ak} and returns a set Emptiness(A) ⊆ InOut(A) , {(s, t) ∈ L+ × ({>} ∪ L+) |
∀i .si ∈ EnAi ∧t = >∨∀i .t i ∈ ExAi }, with the following semantics: (s, t) ∈ Emptiness(A)
i� there exists a sequence of k computations π such that each π i is accepting for A i ,
synchronizes on actions taken at the higher lever of the hierarchy, and:

(i) si = r
i
0(ε) in the �rst con�guration tree in the run π i , for all i;

(ii) t = > if each run in π i is in�nite or if last(π i) < ExAi for some i , and t = last(π i),
otherwise.

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 72

The main intuition is that each of the pairs (s, t) returned by the algorithm is witness
of a sequence of accepting runs, one for each automaton given in input. The emptiness
computation proceeds as follows. Firstly, each of the automaton in the input sequence
is “unboxed”, i.e. the boxes are removed and substituted with appropriate summaries
between entries and exits. This unboxing operation produces a sequence of �at automata
whose parallel composition computed by the function prod is equivalent to the parallel
composition of the automata in A . The �at automaton AF , prod(unbox(A)), which as
usual has as states tuples of states of the �attened automata produced by unbox, is then
passed as input to the function reach, which computes the set of pairs (s, t) ∈ InOut(A).

The unboxing procedure, taking as input a sequence of CHAE A and returning a
sequence of �at automata A ′, is described as follows. For each input automaton A ′ and
for each box b ∈ BA ′, the algorithm computes – on line 6 – the emptiness result I for
the sequence of CHAE in βA ′. After that, in line 7, the set of summary states b × {I } is
added to the set of states QA ′. In line 8, b is removed from the set of boxes and, after
that, the box re�nement function βA ′ is properly restricted. Notice that, at this point,
b is still a state but is no longer a box. Lines 10 and 11 properly enrich the acceptance
conditions to account for the newly-introduced summary states. The intuition is that, if
the box b is an accepting state in the CHAE, then all the corresponding summary states of
the form (b, (s, t)) are to be accepting as well. To ensure so, the function acc, de�ned as
follows, is used. acc(X ,b, I) is equal to X if b < X and to X ∪ ({b} × I) otherwise. Finally,
on line 12, the transition relation is properly updated to include edges to and from the
newly-introduced summary states. The new transition relation is obtained by applying
the function trn de�ned as follows. trn(Q, β, δ ,b, I) is the union of the following sets of
edges:

(i) {(s,σ ,γ , t) ∈ δ | s , b, s , (b, 〈ex1, . . . , ex |β(b)|〉), t , (b, 〈en1, . . . , en|β(b)|〉)} is the
set of original edges not involving the box b;

(ii) {(s,σ ,γ , (b, (t,w)) | (t,w) ∈ I ∧ (s,σ ,γ , (b, t)) ∈ δ } is the set of edges replacing
those in δ entering b;

(iii) {((b, (w, s)),σ ,γ , t) | (w, s) ∈ I ∧ s , > ∧ ((b, s),σ ,γ , t) ∈ δ } is the set of edges
replacing those in δ exiting b from reachable exits;

(iv) {(s,σ ,γ ,b) | (s,σ ,γ , (b, t)) ∈ δ } is the set of edges entering b (for each edge entering
the structured state (b, t) in the original relation, a new edge entering the location
b is introduced);

(v) {(s,σ ,γ , t) ∈ δ | s = b} is the set of original interrupting edges exiting the box b.

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 73

3.4 Satisfiability of HLTL
E
L

over hierarchical computa-

tions

This section provides an automata-based decidability procedure for the satis�ability
problem of the local fragment of HLTLE interpreted over the class of CHAE computations.
The proposed procedure is an extension of the one devised in [24] and grounds, like the
latter, on an extension of the classic approach that, given an LTL formula ϕ, produces a
non-deterministic generalized Büchi automaton Aϕ accepting the computations satisfying
ϕ. This approach, proposed by Vardi and Wolper in [20], devised the topological structure
for Aϕ by connecting sets of locally-consistent subformulae of ϕ, often referred to as
atoms, in a suitable way. The intuition is that each atom takes care of guaranteeing local
consistency, while the connections amongst them take care of the modal semantics of
temporal operators. The generalized Büchi automaton built on this topological structure,
with properly-de�ned acceptance conditions, is the automaton whose language is the set
of all computations satisfying ϕ.

In this section, the intuition above is generalized in a non-trivial way, by extending
the notion of atom along the additional directions related to hierarchy and concurrency,
in order to synthesize a CHAE accepting the interrupting hierarchical words satisfying a
HLTLEL formula.

In what follows, the focus is restricted on HLTLEL formulae in negation normal form
(see De�nition 15), thus the subscript l for all temporal operators is dropped for the sake
of notation.

Firstly, the notions of closure of a HLTLEL formula φ and atom over a set of HLTLEL
formulae are de�ned as follows.

De�nition 25 (Closure set of a HLTLEL formula [24]). Given φ ∈ HLTLEL, its closure cls(φ)
is the smallest set satisfying the following properties:

(i) φ ∈ cls(φ);
(ii) if Opψ ∈ cls(φ), with Op ∈ {¬, X, XE}, thenψ ∈ cls(φ);

(iii) if XEψ ∈ cls(φ), then Xψ , XE>, ↓1> ∈ cls(φ);
(iv) if Xψ ∈ cls(φ), then X> ∈ cls(φ);
(v) ifψ1Opψ2 ∈ cls(φ), with Op ∈ {∧,∨}, thenψ1,ψ2 ∈ cls(φ);

(vi) ifψ1 Uψ2 ∈ cls(φ) (resp. ψ1 Rψ2 ∈ cls(φ)), thenψ2 ∨ (ψ1 ∧ X(ψ1 Uψ2)) ∈ cls(φ) (resp.
ψ2 ∧ (ψ1 ∨ X(ψ1 Rψ2)) ∈ cls(φ)).

De�nition 26 (HLTLEL atom [24]). An atom over a set of HLTLEL formulae C ⊆ HLTLEL is
a set α ⊆ C ∪ {en, ex} ∪ ¬{en, ex} satisfying the following closure rules:

(i) ⊥ < α ;

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 74

(ii) p ∈ α i� ¬p < α for all p ∈ {en, ex} ∪ (P ∩C);
(iii) if ϕ ∈ α (resp. ¬ϕ ∈ α), then ¬ϕ < α (resp. ϕ < α);

(iv) if en ∈ α (resp. ex ∈ α) then ex < α (resp. en < α) and ↓i(ϕ) < α for any i ∈ �+ and
ϕ ∈ HLTLEL;

(v) if ex ∈ α , then Xϕ < α for any ϕ ∈ HLTLEL;

(vi) if ϕ1 ∧ ϕ2 ∈ α (resp. ϕ1 ∨ ϕ2 ∈ α), then ϕ1,ϕ2 ∈ α (resp. ϕ1 ∈ α or ϕ2 ∈ α);

(vii) if ϕ1 Uϕ2 ∈ α (resp. ϕ1 Rϕ2 ∈ α) then ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2)) ∈ α (resp. ϕ2 ∧ (ϕ1 ∨
X(ϕ1 Uϕ2)) ∈ α).

The set of all atoms over C ⊆ HLTLEL is denoted by Atm(C).Moreover, the following
notation is introduced: Atmp(C) , {α ∈ Atm(C) | p ∈ α } is the set of all atoms containing
the p, with p ∈ {en, ex}; Atm→(C) , {

α ∈ Atm(C) | ∃ϕ ∈ HLTLEL.→ϕ ∈ α}
is the set of

all atoms requiring a right sibling; AtmF (C) , {α ∈ Atm(C) | ¬ X> ∈ α } is the set of
all �nal atoms, i.e. those not allowing for the existence of a successor; Atmϕ1 Uϕ2(C) ,
{α ∈ Atm(C) | ϕ1 Uϕ2 ∈ α ⇒ ϕ2 ∈ α } is the set of all atoms that locally satisfy the until
subformula ϕ1 Uϕ2.

An atom α may represent a state requiring re�nement by one or more automata. For
example, an atom α such that ↓2(p) ∈ α requires re�nement by at least two automata
and, in particular, requires for p to hold in its second child. To determine the formulae
required to hold in each of the possibly many automata required to re�ne an atom, a
contextualization function cnt is introduced and de�ned as follows.

De�nition 27 (Contextualization function [24]). Given an HLTLEL atom α , its contextual-
ization cnt(α) is a set of pairs in�×HLTLEL with the following semantics: (n,ψ) ∈ cnt(α)
i� the HLTLEL formula ψ is required by α to hold in its n-th child. More precisely,
cnt : Atm → 2�×HLTLEL and cnt(α) is the smallest set such that the following conditions
hold:

(i) (i,ϕ) ∈ cnt(α) for all ↓i(ϕ) ∈ α ;

(ii) if (i, Opϕ) ∈ cnt(α), with Op ∈ {¬, X, XE} then (i,ϕ) ∈ cnt(α);
(iii) if (i, XEψ) ∈ cnt(α), then (i, Xψ), (i, XE>), (i, ↓1>) ∈ cnt(α);
(iv) if (i, Xψ) ∈ cnt(α), then (i, X>) ∈ cnt(α);
(v) if (i,ϕ1Opϕ2) ∈ cnt(α), with Op ∈ {∧,∨}, then (i,ϕ1), (i,ϕ2) ∈ cnt(α);

(vi) if (i,ϕ1 Uϕ2) ∈ cnt(α) (resp. (i,ϕ1 Rϕ2) ∈ cnt(α)), then (i,ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2))) ∈
cnt(α) (resp. (i,ϕ2 ∧ (ϕ1 ∨ X(ϕ1 Rϕ2))) ∈ cnt(α));

(vii) if (i,←ϕ) ∈ cnt(α) and i > 1 (resp. (i,→ϕ) ∈ cnt(α)) then (i − 1,ϕ) ∈ cnt(α) (resp.
(i + 1,ϕ) ∈ cnt(α)).

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 75

Note that the contextualization of an atom associated with a location is the empty set.
Given an atom’s contextualization, it is immediate to determine the maximum number of
parallel automata over which it may predicate by means of the maxind function de�ned
as follows: maxind(α) , max{n ∈ �|∃ϕ ∈ HLTLEL.(n,ϕ) ∈ cnt(α)}. Atoms associated
with boxes have strictly positive maxind, while the ones associated with locations have
maxind = 0.

The contextualization of an atom also allows for the computation of the closure and
the set of atoms associated with its required i-th child, by means of the functions cls and
atm de�ned as follows.

De�nition 28 (Closure for the i-th child [24]). The function cls : Atm(C) ×�+ 7→ 2HLTLEL

takes as input an atom α and a positive natural number i and collects all the HLTLEL
formulae ϕ in cnt(α) that are required to hold in the i-th child. More precisely, cls(α, i) =
{ϕ | (i,ϕ) ∈ cnt(α)}.
De�nition 29 (Atoms for the i-th child [24]). Given an atom α and a positive natural
number i , atm(α, i) collects all the atoms α ′ in Atm(cls(α, i)).

Recall that CHAE semantics require that siblings execute synchronously in parallel
(see De�nition 19). When synthesizing lower-level automata, the problem of enforcing
synchronization amongst siblings arises. The required synchronization can be obtained
by means of a synchronization function syn which associates to each given atom α a set
of couples in which the �rst element is a sequence of synchronization-compatible atoms
and the second one is a sequence of possible target atoms. Each of these synchronization-
compatible sequences represents a possible synchronization amongst sibling machines
re�ning the box associated with α , when each of them is the state encoded by the cor-
responding atom in the sequence. Formally, the synchronization function is de�ned as
follows.

De�nition 30 (Synchronization function [24]). The synchronization function syn :
Atm→α 2

⋃maxind(α)
i=1 Atmi ×Atmi is such that, for all 〈α, τ 〉 ∈ ⋃maxind(α)

i=1 Atmi ×Atmi , 〈α, τ 〉 ∈
syn(α) i� the following conditions hold:

(i) for all 1 ≤ i ≤ |α |, α i, τ i ∈ atm(α, i);
(ii) either en ∈ α i (resp. ex ∈ α i) for all 1 ≤ i ≤ |α |, or en < α i (resp. ex < α i), for all

1 ≤ i ≤ |α |;
(iii) if→ϕ ∈ α i , then ϕ ∈ α i+1, for all 1 ≤ i < |α |;
(iv) if←ϕ ∈ α i , then ϕ ∈ α i−1, for all 1 < i ≤ |α |;
(v) for all 1 ≤ i < |α |, ¬→> < α i ;

(vi) for all 1 < i ≤ |α |, ¬←> < α i ;
(vii) if ¬↓i > ∈ α then |α | < i .

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 76

Constraint (ii) requires that a sibling in an entry state (resp. exit state) can only synchronize
with siblings in entry states (resp. exit states). Constraints (iii) and (iv) are necessary to
enforce consistency on siblings, i.e. a sibling requiring→(ϕ) (resp.←(ϕ)) can synchronize
only with a right (resp. left) sibling requiring ϕ. Constraints (v) and (vi) require that
sequences are well-formed, i.e. all the elements but the last one cannot require the non-
existence of a right sibling and all the elements but the �rst one require the non-existence
of a left sibling. Finally, constraint (vii) guarantees that an atom containing ¬↓i > for
some i ∈ �+ cannot have synchronization sequences of length i or more, since it cannot
have more than i children.

An HLTLEL atom, because of the possible disjunctive combinations of the operators
→,← and ↓i , may require re�nement by di�erent numbers of parallel machines. Think,
for example, of atoms containing formulae like (↓1(p ∧ (¬→>)) ∨ (↓1(q ∧ (→p)). Such
atoms represent boxes which can be re�ned by either 1 or 2 children. In this cases, the
synchronization function returns sequences of di�erent length. To disambiguate such
cases, the following two-step procedure is used:

1. �rstly, the atom is associated with the indices indicating all the possible lengths
of the synchronization sequences associated with the corresponding box. This is
achieved by means of the indatm : Atm 7→ 2�, where indatm(α) , {|a | ∈ � | a ∈
syn(α)}. Each pair in Atm×α indatm(α) represents a possible re�nement of the
corresponding atom;

2. secondly, for each index i ∈ indatm(α), the synchronization sequences of length i
are collected by means of the function syn : Atm×α indatm(α) 7→(α,i) 2Atmi , where
syn(α, i) = {〈α, τ 〉 ∈ syn(α) | |α | = i}.

What remains is to determine, for each given HLTLEL formula ϕ, the atoms associated
with the top-level automaton. Intuitively, these top-level atoms cannot require for the
existence of siblings, since the top-level automaton executes in isolation. Before formal-
izing the top-level atoms, the function seed-atom, associating to each HLTLEL formula
an atom, is introduced and de�ned as follows: seed-atom : HLTLEL 7→ Atm is such that
seed-atom(ϕ) = {↓1(ϕ),¬ en,¬ ex}. The seed-atom(ϕ) associated to each formula ϕ has
no deep meaning and is merely a technical tool necessary to guarantee that top-level
atoms do not require for the existence of siblings, as explained below. It is now possible to
associate with each HLTLEL formula ϕ the set of top-level atoms by means of the function
atm : HLTLEL 7→ϕ 2Atm(cls(ϕ)), which is de�ned as follows.

De�nition 31 (Top-level atoms for a HLTLEL formula [24]). Given a HLTLEL formula ϕ, the
set of initial atoms atm(ϕ) is the set of all atoms α ∈ Atm(cls(ϕ)) such that the following
conditions are satis�ed:

(i) α ∈ {α1 | 〈α, τ 〉 ∈ syn (seed-atom(ϕ)) ∧ |α | = 1};
(ii) if en ∈ α then ϕ ∈ α , since, by HLTLEL semantics (see De�nition 14), ϕ is required to

hold in the initial states;

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 77

Algorithm 2 HLTLEL to CHA translation

signature Aut : HLTLEL → CHA
1: function Aut(φ)
2: return Aut1({φ}, atm(φ), 1); . Synthesize top-level automaton
3: end function

signature Autk 2HLTLEL × Atmk ×[1,k] → CHA
1: function Autk (Φ, Γ, i)
2: A← {α i ∈ Atm : 〈α, τ 〉 ∈ Γ}
3: Q ← {(α,d) ∈ A ×� : d ∈ indatm(α)}
4: En← {(α, 0) ∈ Q : Φ ⊆ α ∈ Atmen}
5: Ex ← {(α, 0) ∈ Q : α ∈ Atmex}
6: B ← {(_,d) ∈ Q : d > 0}
7: for all b = (α,d) ∈ B do

8: β(b) ← ε
9: for 1 ≤ j ≤ d do

10: β(b) ← β(b) · Autd({ψ | ↓j ψ ∈ α }, syn(α,d), j)
11: end for

12: end for

13: δ ← trn(Q, Γ, β, i)
14: F ← {(α, _) ∈ Q : α ∈ AtmF }
15: R ← {{(α, _) ∈ Q : α ∈ Atmϕ1 Uϕ2} : ∃α ∈ A.ϕ1 Uϕ2 ∈ α }
16: return 〈Q, En, Ex,B, β, δ , F ,R〉
17: end function

(iii) ex < α , since the top-level automaton is not allowed to terminate.

Condition (i) selects as top-level atoms only those that are contained in synchronization
sequences of the seed-atom(ϕ) having length 1, i.e. not requiring for any sibling.

With the previously-de�ned technical tools in place, it is now possible to describe the
proposed synthesis procedure, shown in Algorithm 2. The main procedure Aut takes as
input an HLTLEL formula and returns a CHAE accepting the interrupting hierarchical words
satisfying the formula. To do so, the auxiliary function Autk : 2HLTLEL × Atmk ×[1,k] →
CHA is used. Autk(Φ, Γ, i) synthesizes the i-th child automaton is a sequence of k siblings
executing synchronously in parallel, with Φ being the set of formulae required in the
initial states and Γ being the set of synchronization symbols over which the automaton
and its siblings need to synchronize. When synthesizing the top-level automaton, which
works in isolation and has no siblings, for the formula φ (see line 2), the function Aut1
is used, φ is the only required formula in the initial states and the automaton is allowed
to synchronize on every possible initial atom in atm(φ). The synthesis of the CHAE

Autk(Φ, Γ, i) proceeds as follows. In line 2, the atoms for the automaton to be synthesized
are collected by extracting the i-th atoms in the synchronization sequences in Γ. Then,

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 78

in line 3, the set of control states is constructed by computing A ×α indatm(α). In line
4, entering locations are identi�ed as the control states (α,d) satisfying the following
conditions: (i) no re�nement is required, i.e. d = 0; (ii) the corresponding atom represents
an initial state, i.e. en ∈ α ; (iii) the required formulae Φ are satis�ed, i.e. Φ ⊆ α . Similarly,
in line 5, exiting locations are collected as the states whose corresponding atom is in Atmex .
The set of boxes is then de�ned as the set of control states (α,d) requiring re�nement
by at least one child, i.e. having d > 0. In lines 7–12 the required re�nements for each
box are synthesized and the re�nement function β is de�ned. In greater detail, for each
box b = (α,d), and for each required j-th re�nement of b, the corresponding automaton
is synthesized by calling Autd as in line 10. In this call, the set of required formulae in
the initial state is the set of allψ such that ↓j(ψ) is required in the box’s atom α , the set of
synchronization symbols is the set of all synchronization sequences having length equal
to d , and the child to synthesize is the j-th one. In line 13, a call to the function trn de�nes
the transition relation for the synthesized automaton according to the following rules:

(i) a state q = (α,d) with ¬ X> ∈ α , cannot have any outgoing transition;

(ii) a state b = (α,d) with ¬ XE> ∈ α cannot have outgoing interrupting transitions;

(iii) a state b = (α,d) with XEψ ∈ α for some ψ ∈ HLTLEL can only have outgoing
interrupting transitions;

(iv) if a state q is allowed to have successors, i.e. it does not fall in case (i), then each
target of its transitions must be such such that its associated atom contains all the
subformulae ϕ such that Xϕ or XE ϕ ∈ α ;

(v) in an automaton being the i-th child re�ning a box, any source s associated to some
state q = (α,d) can have an outgoing transition to some target t with input symbol
σ and synchronization symbol α i� it agrees with the atomic propositions in σ ,
α i = α , and τ i = αt , with αt being the atom corresponding to the target t .

Before formalizing the trn function, the set of sources and targets associated with a state
q = (α,d), with the re�nement function β , are de�ned respectively as follows:

srcβ (q) =
{
{q}, if d = 0;
{q},∪{(q, ex1, . . . , exd) | ∀i ∈ {1, . . . ,d}. exi ∈ Exβ(q)i } otherwise.

trgβ (q) =
{
{q}, if d = 0;
{(q, en1, . . . , end) | ∀i ∈ {1, . . . ,d}. eni ∈ Enβ(q)i }, otherwise.

With the de�nitions of sources and targets associated with a state in place, it is possible
to formalize the function trn as follows: δ = trn(Q, Γ, β, i) is such that, for each input
symbol σ ∈ Σ and synchronization symbol γ = 〈α, τ 〉 ∈ Γ, for all states q = (α,d) ∈ Q

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 79

and sources s ∈ srcβ (q), it holds that

δ (s,σ ,γ) =

{
t ∈ trgβ (q′) : q′ = (τ i, _) ∈ Q∧

∀Xϕ ∈ α .ϕ ∈ τ i

}
,

if ¬ X> < α and ¬ XE> ∈ α and
α i = α and σ = α ∩ P and

(d > 0⇒ s , q);{
t ∈ trgβ (q′) : q′ = (τ i, _) ∈ Q∧
∀Opϕ ∈ α .ϕ ∈ τ i , Op ∈ {X, XE}

}
,

if ¬ X> < α and ∃ϕ . XE ϕ ∈ α and
α i = α and σ = α ∩ P and s = q;{

t ∈ trgβ (q′) : q′ = (τ i, _) ∈ Q∧
∀Xϕ ∈ α .ϕ ∈ τ i

}
,

if ¬ X> < α and α i = α and
σ = α ∩ P;

�, otherwise.

The above case analysis is explained as follows.
The �rst case guarantees that a state whose corresponding atom does not explicitly

forbid the existence of a successor (¬ X> < α), but forbids the existence of interrupting
successors (¬ XE> ∈ α), is only allowed to have non-interrupting transitions satisfying
condition (v) in the previous informal description (α i = α , σ = α ∩P, and the target atom
is forced to match τ i). In this case, the target atoms must also contain every subformula
ψ such that Xψ ∈ α (notice that α cannot contain formulae of the form XEψ since
¬ XE> ∈ α). The fact that only non-interrupting transitions are allowed is guaranteed by
condition (d > 0⇒ s , q). This condition requires that, if the state is a box (i.e. d > 0),
then the source cannot be non-structured state. Recall that, in CHAE (see De�nition 16),
interrupting transitions have as source the box alone, while non-interrupting synchronous
return transitions must specify a box and a sequence of exiting states for the box’s children,
e.g. (b, ex).

The second case guarantees that a state whose corresponding atom does not explicitly
forbid the existence of a successor and contains some formula of the form XE ϕ, is allowed
to have only interrupting transitions satisfying, as in the previous case, condition (v). In
this case the target atoms are required to contain everyψ such that Xψ ∈ α or XEψ ∈ α .
The fact that only interrupting transitions are allowed is guaranteed by condition s = q.
Notice that there is no need to specify that s must be a box since the associated atom
contains XEψ and, by closure rules (see De�nition 25), must also contain ↓1> and thus is
necessarily a box.

The third case is applied to states whose corresponding atoms do not explicitly deny
the existence of a successor and neither forbid the existence of an interrupting successor
nor require it. Such states are allowed to perform both interrupting and non-interrupting
transitions satisfying the previously-discussed constraint (v) to states whose correspond-
ing atoms contain every subformula ψ such that Xψ ∈ α (notice that α cannot contain
formulae of the form XEψ , as it would have fallen in the previous case).

In every other case, i.e. when the existence of a successor is explicitly denied (¬ X> ∈
α), or σ does not agree with the source atom on the atomic propositions (σ , α ∩ P), or
the synchronization sequence is inappropriate (i.e. α i , α), no transition is allowed.

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 80

Model checker

Synchronous product
A ′ ⊗ A ′¬ϕ

Box alignment

Emptiness(A ′ ⊗ A ′¬ϕ)

SCSAE A ′ SCSAE A ′¬ϕ

CHAE A CHAE A¬ϕ

Model of system

System

HLTLEL formula ϕ

Property

Yes No + counter-example

Figure 3.5: Overview of HLTLEL model checking

In lines 14 and 15 the acceptance conditions are de�ned. F is de�ned as the set of
states associated with atoms not requiring a successor, while R contains, for each until
subformula belonging to some atom in A, a set of atoms locally satisfying the until. These
generalized Büchi conditions are necessary with until subformulae to reject computations
in which the second until operand is never actually satis�ed, as explained in [20] [3, §5.2].

With the automaton Aϕ = Aut(ϕ) in place, solving the satis�ability problem for ϕ
amounts to decide the emptiness of L(Aϕ), which can be done as described in Section 3.3.

3.5 HLTL
E
L

Model Checking

Given an HLTLEL formula ϕ over the set of atomic propositions P and a CHAE model
A ∈ CHAE(2P, Γ,Q,B), the model checking problem consists in deciding whether every
interrupting hierarchical word ξ accepted by A is such that of ξ � ϕ. The procedure
described in this section and represented in Figure 3.5 is an extension of the classic,
previously-cited, automata-based LTL model checking described in [20, 3].

The main intuition is to represent the negation of the HLTLEL formula ϕ as a CHAE,
which can be done as described in Section 3.4 and in Algorithm 2, then compute the
synchronous product of the system’s and the formula’s automata, thus obtaining an

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 81

automaton whose emptiness can be checked to look for runs satisfying the negation of
the property, i.e. to disprove the fact that the property holds in every system’s run.

With the synthesis and the emptiness problems already addressed in the previous
sections, what remains is to properly de�ne the synchronous product of two CHAE. In
what follows, the synchronous product is de�ned for box-compatible automata. Then, since
the system’s and the formula’s automata might not be box-compatible, a box alignment
procedure to make them box-compatible without altering the model checking’s result is
de�ned.

De�nition 32 (Box-compatible CSAE). Given two CSAE A1 ∈ CSAE(Σ, Γ1,Q1,B1) and
A2 ∈ CSAE(Σ, Γ2,Q2,B2) over the same set of input symbols Σ, A1 and A2 are box-
compatible, in symbols A1 ∝b A2, i� the following conditions hold:

(i) all the boxes in both automata are re�ned by the same number of machines, i.e. for
every (b1,b2) ∈ BA1 × BA2 , |βA1(b1)| = |βA2(b2)|;

(ii) for each pair (b1,b2) ∈ BA1 × BA2 and for each i ∈ [0, |βA1(b1)| − 1], it holds that
βA1(b1)i ∝b βA2(b2)i .

De�nition 33 (Synchronous product of CSAE). Given two box-compatible automata
A1 ∈ CSAE(Σ, Γ1,Q1,B1) and A2 ∈ CSAE(Σ, Γ2,Q2,B2), the synchronous product A1 ⊗ A2
is the CSAE de�ned as follows:

A1 ⊗ A2 = 〈Q, En, Ex,B, β, δ , F ,R〉

where:

• Q = QA1 ×QA2 , En = EnA1 × EnA2 , Ex = ExA1 × ExA2 , B = BA1 × BA2 ;

• for all b = (b1,b2) ∈ B, β(b) =∏|βA1 (b1)|−1
i=0 (βA1(b1)i ⊗ βA2(b2)i);

• for all (q1,q2) ∈ SrcA1 × SrcA2 , σ ∈ Σ, (γ1,γ2) ∈ Γ1 × Γ2, δ ((q1,q2),σ , (γ1,γ2)) =
δA1(q1,σ ,γ1) × δA2(q2,σ ,γ2);

• F = FA1 × FA2 ;

• R = {Z ×QA2 | Z ∈ RA2} ∪ {QA1 × Z | Z ∈ RA2}.
Consider an HLTLEL formula ϕ over the set of atomic propositions P and a CHAE

model M ∈ CHAE(2P, Γ,Q,B). Let F be the automata obtained from the negation of ϕ as
described in Algorithm 2. As already noted, M and F need not to be box-compatible. In
order to make the asynchronous product always computable, the box alignment procedure
is introduced. If M ∝b F , then the box alignment procedure leaves both automata
unchanged. On the contrary, if M 6∝b F , then the box alignment procedure produces two
box-compatible automata M ′ and F ′ by appropriately “padding”, with suitably-de�ned
children, the boxes violating condition (i) in De�nition 32. M ′ and F ′ are de�ned in such

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 82

Algorithm 3 Box alignment procedure

signature BoxAlign CSAE × CSAE → CSAE × CSAE

ensure The returned CSAE are box-compatible
1: function BoxAlign(M ,F)
2: (M ′,F ′) ← (M ,F)
3: m ←max

{{|βM (bm)| | bm ∈ BM } ∪ {|βF (b f)| | b f ∈ BF }
}

4: for all bm ∈ BM ′ do

5: while |βM ′(bm)| < m do

6: βM ′(bm) ← βM ′(bm) ·Apad
7: δM ′ ← updateTransitionsRef(bm, δM ′)
8: end while

9: end for

10: for all b f ∈ BF ′ do

11: while |βF ′(b f)| < m do

12: βF ′(b f) ← βF ′(b f) ·Apad
13: δF ′ ← updateTransitionsCheck(b f , δF ′)
14: end while

15: end for

16: for all (bm,b f) ∈ BM ′ × BF ′ do

17: (βM ′, βF ′) ← (ε, ε)
18: for 0 ≤ i < |βM ′(bm)| do
19: (AM ,AF) ← BoxAlign(βM ′(bm)i, βF ′(b f)i)
20: βM ′(bm) ← βM ′ ·AM

21: βF ′(b f) ← βF ′ ·AF

22: end for

23: end for

24: return (M ′,F ′)
25: end function

a way that the model checking result is not altered. More precisely, the box alignment
procedure is described in Algorithm 3 and proceeds as follows. In line 3, the maximum
number of children required by any box in both systems is stored in the variable m. The
loop in lines 4–9 iterates over every box bm in the model automaton and, if a box is re�ned
by less thanm automata, an instance of the special padding automaton Apad is added until
the box is re�ned by exactlym automata. The padding automaton Apad, whose topology
is shown in Figure 3.6, will be discussed later. At this point, it su�ces to say that Apad is
de�ned in such a way that no run entering its enref initial state can be accepting. After
adding an instance of Apad to the re�nements of the box bm, it is necessary to update
the transition relation δM ′ to properly extend the list of entering states for transitions
entering bm. This is done by means of a function updateTransitionsRef taking as inputs
the box bm and the original transition relation δM ′ and returning an updated transition

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 83

relation δ ′
M ′ de�ned as the union of the following sets of edges:

• {(s,σ ,γ , t) ∈ δM ′ | t , (bm, en)}, the set of original edges not entering bm;

• {(s,σ ,γ , t ′) | (s,σ ,γ , t) ∈ δM ′, t = (bm, en)} and t ′ = (bm, en · enref), the set of
edges substituting the original ones entering bm and specifying the additional enref
entering state for the newly-added padding automaton.

The intuition behind this is to allow for the product to be de�ned while not introducing
accepting computations in which the newly-introduced system automata are involved.

In lines 10–15, the procedure iterates over every box b f in the formula automaton F ′

and, similarly to the previous loop, if a box is re�ned by less automata thanm, padding
automata are added until the box is re�ned by exactly m automata. When padding
the formula automaton, it is necessary to distinguish between two cases, depending on
whether the current run allows for the existence of additional children or not. If the box
allows for the existence of an additional children, computations involving the newly-
introduced padding automaton might be accepting. On the contrary, if the box explicitly
forbids the existence of an additional children, no run involving the newly-introduced
padding-automaton must be allowed to be accepting. This discrimination is taken care
of partly by the function updateTransitionsCheck used to update the transition relation
after the addition of a padding automaton and partly by the padding automaton itself, as
explained later. Before addressing the details, notice that the existence of the i-th child of
a box (α,d) can be explicitly forbidden if:

(i) the father explicitly requires the non-existence of the i-th child, i.e. ¬↓i > ∈ α ;

(ii) the previous sibling’s entering state in the current run is such that the corresponding
atom contains ¬→>. Notice that the previous sibling automaton could have more
than one entering state, and some of them may allow for the existence of a right
sibling and some not. For a concrete example it su�ces to think of formulae of the
form ↓i−1(p ∨ ¬→>) belonging to α ;

(iii) the previous sibling, at some later point in time, requires for the non-existence of a
right sibling. This happens for example when formulae of the form ↓i−1(X(¬→>))
or ↓i−2(→(p U (¬→>))) belong to α .

The transition update function updateTransitionsCheck takes care of enforcing the non-
acceptance of runs involving the newly-added padding automaton in cases (i) and (ii).
For the sake of clarity, before continuing with the formalization, the function atom :
QF 7→ Atm is de�ned as the function associating to each (possibly structured) state in
the formula automaton the corresponding atom. atom(q) = � if q is one of the states of
the padding automaton Apad. The function updateTransitionsCheck takes as inputs the
box b f and the original transition relation δF ′ and returns an updated transition relation
δ ′
F ′ de�ned as the union of the following sets of edges:

• {(s,σ ,γ , t) ∈ δF ′ | t , (b f , en)}, the set of original edges not entering b f , which are
left unchanged;

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 84

• {(s,σ ,γ , t ′) | (s,σ ,γ , t) ∈ δF ′ , t = (b f , en), t ′ = getTrg(t)}, with the function getTrg
de�ned as follows :

getTrg((b f , en)) =
{
(b f , en · enref), if ¬↓|en|+1> ∈ atom(b f) ∨ ¬→> ∈ atom(last(en));
(b f , en · en), otherwise.

The original edges entering the padded formula box are substituted by new edges in
such a way that computations involving the newly-added automaton falling in cases
(i) (i.e. ¬↓|en|+1> ∈ atom(bm)) and (ii) (i.e. ¬→> ∈ atom(last(en))) are forced to enter
the padding automaton by its enref, which as mentioned before, forces the run to be
non-accepting. Unfortunately, at this point, it is not as easy to identify runs falling in
case (iii). So, in every other case, the updateTransitionsCheck forces the runs to enter the
padding automaton by its en state, which could lead to both non-accepting or accepting
runs. The discrimination of runs falling in case (iii) is taken care of by the structure of the
padding automaton itself, which is now described in detail.

De�nition 34 (The padding automaton Apad). The padding automaton, depicted in Figure
3.6, is a CSAE de�ned on the same sets of synchronization symbols Γ and input alphabet
Σ as his siblings as

Apad = 〈Qpad, Enpad, Expad,Bpad, βpad, δpad, Fpad,Rpad〉,
where:

• Qpad = {en, enref, Lacc, Lref,Bacc,Bref, ex};
• Enpad = {en, enref};
• Expad = {ex};
• Bpad = {Bacc,Bref};
• βpad = {(Bacc,Apad), (Bref,Apad)};
• Fpad = {en, Lacc,Bacc, ex};
• Rpad = {{en, Lacc,Bacc, ex}};
• δpad is de�ned as the union of the following sets of edges:

InRef =
{
(s,σ , 〈α, τ 〉, t)

���� σ ∈ Σ, 〈α, τ 〉 ∈ Γ, s ∈ {enref, Lref, (Bref, ex),Bref},
t ∈ {Lref, (Bref, en)}

}
;

InAcc =
(s,σ , 〈α, τ 〉, t)

������ σ ∈ Σ, 〈α, τ 〉 ∈ Γ.¬→> < last(τ),s ∈ {en, Lacc, (Bacc, ex),Bacc},
t ∈ {Lacc, (Bacc, en), ex}

 ;

ToRef =
(s,σ , 〈α, τ 〉, t)

������ σ ∈ Σ, 〈α, τ 〉 ∈ Γ.¬→> ∈ last(τ),s ∈ {en, Lacc, (Bacc, ex),Bacc},
t ∈ {Lref, (Bref, en)}

 .

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 85

en

Lacc

Lref

enref

(Bacc, en) (Bacc, ex)Bacc
[Apad]

(Bref, en) (Bref, ex)

Bref
[Apad]

ex

Apad

notice that, for the
sake of clarity, multiple
dashed edges have been
collapsed into a single
line in this representa-
tion. In particular, six
di�erent dashed edges
pass through this point.

Figure 3.6: Topological structure for Apad

Intuitively, Apad can be seen as partitioned in two regions: one “accepting” region,
consisting in the states in Fpad, and one “non-accepting” region with states inQpad\Fpad. As
already mentioned, computations entering the non-accepting region are forced to remain
in it, cannot reach the exiting state and thus cannot be accepting. The edges for the non-
accepting region are indeed de�ned in set InRef in De�nition 34 and link, for each input
symbol and synchronization symbol, each refuting source in {enref, Lref, (Bref, ex),Bref} to
each refuting target in {Lref, (Bref, en)}. While staying in the accepting region, the padding
automaton must “monitor” the behaviour of the last “real” (i.e. not added by the padding
procedure) sibling and, whenever such automaton enters a state whose atom explicitly
requires ¬→>, the padding automaton must perform a transition to its non-accepting
region, ensuring that the current run cannot be accepted. This monitoring process is made
possible by the second element in the synchronization symbol of each transition, which
is equal to the target’s atom, and allows for the de�nition of the remaining transitions of
Apad in sets InAcc, ToRef in De�nition 34. In particular, InAcc contains all those edges in
which the last “real” child transits in states allowing for the existence of a right sibling. In
this cases, the transitions remain inside the accepting region. ToRef contains all those
edges in which the last “real” child transits in states that explicitly forbids the existence of
a right sibling. In those case Apad transits to its non-accepting region and the computation

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 86

is rejected. In Figure 3.6, classes of transitions having the same source and target are
represented by edges between states. For edges whose source is a state in Fpad, transitions
belonging to ToRef are depicted by dashed lines, while the others in InAcc are represented
by solid lines.

Getting back to the box alignment procedure, after the previously-discussed loops in
lines 4–15, every box in both M ′ and F ′ is re�ned by exactlym machines, thus condition
(i) in De�nition 32 is satis�ed. What remains is to ensure that also condition (ii) holds,
which is done by means of the loops in lines 16–23, with recursive calls to the BoxAlign
procedure (line 19).

Notice that, after applying the box alignment procedure, the CHAE M and F may
be transformed in recursive automata (CSAE), since instances of the recursive machine
Apad might have been be introduced. In particular, the results M ′ and F ′ of the box
alignment procedure belong to the sub-class of Simple CSAE (SCSAE), in which the only
automaton allowed to perform recursive calls is Apad. The synchronous product of
SCSAE, as per De�nition 33, may be a recursive automaton in which the only recursive
machines are products of Apad. In fact, the synchronous product of a CHAE and Apad is
always a CHAE. More formally, the only recursive machines in the synchronous product
of two SCSAE belong to the set Ξpad, namely the least set such that: (i) Apad ∈ Ξpad;
(ii) A ,B ∈ Ξpad ⇒ A ⊗ B ∈ Ξpad. Such machines are equivalent to a single Apad,
therefore when computing the product of two SCSAE, they can be substituted with
an Apad, in order to obtain yet another SCSAE. It is possible to extend the emptiness
procedure devised for CHAE in Algorithm 1 to SCSAE as shown in Algorithm 4. The
SCSAE emptiness procedure is rather similar to the CHAE one described in Section 3.3,
with the only di�erence being the way in which the InOut set is recursively computed in
the Unbox subroutine. In fact, applying the CHAE emptiness procedure to SCSAE without
any precaution may lead to non-termination of the algorithm. When computing the
InOut set for a box, the new procedure (see lines 7–13) distinguishes between two cases
depending on whether the box is re�ned by some recursive automata or not. If the box
was not “padded”, then the InOut set is computed exactly as in the previous procedure
(see line 8). On the contrary, if the box is re�ned by instances of Apad, the emptiness result
is computed only considering the “original” siblings, i.e. the siblings which are not Apad.
This partial emptiness result is stored in the temporary variable I ′ and is used to compute
the actual emptiness result for the box by means of the function getInOutSCSA (see lines
11–12). This function grounds on the fact that it is trivial to compute the emptiness result
for Apad by hand, and in particular Emptiness(Apad) = {(en, ex), (en,>)}. The function
getInOutSCSA takes as inputs the partial emptiness result I ′, the number n of automata
for which the partial emptiness result was computed, the number m of total automata
re�ning the current box, and builds the complete emptiness result as follows:

getInOutSCSA(I ′,n,m) =
{(
s, t

) ����� s = s′ · enm−n and t = t
′ · tpad, tpad ∈ {ex,>}m−n

and
(
s′, t ′

)
∈ I ′

}
Intuitively, getInOutSCSA extends each component of each element (s′, t ′) in the partial

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 87

Algorithm 4 SCSAE emptiness

signature Emptiness : (SCSAE)+ →A InOut(A)
1: function Emptiness(A)
2: return reach(prod(Unbox(A)));
3: end function

signature Unbox (SCSAE)+ → CFA+

1: function Unbox(A)
2: A ′← ε
3: for 0 ≤ i < |A | do
4: A ′← A i

5: for all b ∈ BA ′ do

6: n ← max{i | βA ′(b)i , Apad} + 1 . n is the num. of “original” children
7: if n = 0 then . the box contains no recursive automata
8: I ← Emptiness(βA ′(b)) . just as with CHAE

9: else . the box was “padded” and contains recursive automata
10: m ← |βA ′(b)| .m is the total number of children
11: I ′← Emptiness(βA ′(b)0, . . . , βA ′(b)n−1)
12: I ← getInOutSCSA(I ′,n,m)
13: end if

14: QA ′ ← QA ′ ∪ ({b} × I) . add summary states
15: BA ′ ← BA ′ \ {b} . remove b from the set of boxes
16: βA ′ ← δA ′�BA ′ . restrict the box re�nement function
17: FA ′ ← acc(FA ′,b, I) . suitably enrich accepting states
18: RA ′ ← {acc(X ,b, I) | X ∈ RA ′} . suitably enrich accepting states
19: δA ′ ← trn(QA ′, βA ′, δA ′,b, I) . update the transition function
20: end for

21: A ′← A ′ ·A ′
22: end for

23: return A ′
24: end function

InOut set I ′ to account for the additional padding automata re�ning the box.
With the emptiness procedure for SCSAE in place, the model checking procedure

described in Figure 3.5 and summarized as follows is �nally complete. The model checking
procedure takes as inputs a CHAE model A on the alphabet Σ = 2P and an HLTLEL property
ϕ on the set of atomic propositions P. By applying Algorithm 2, the model checker builds
the automaton A¬ϕ accepting only hierarchical words satisfying ¬ϕ. After that, since A
and A¬ϕ may as well be not box-compatible, the model checker applies the previously-
discussed box alignment procedure in order to obtain two box-compatible automata A ′

and A ′¬ϕ . These two automata belong to the class of SCSAE, since they may contain the

Chapter 3 - Reasoning about Hierarchical Concurrent Computations with Interrupts 88

recursive Apad automaton. Then, the synchronous product A ′ ⊗ A ′¬ϕ is computed as
described in De�nition 33, thus obtaining the product SCSAE. What remains is to apply
the emptiness decision procedure for SCSAE described in Algorithm 4. If the emptiness
procedure returns an empty set, then the property ϕ is satis�ed by every computation
accepted by A . On the contrary, every returned InOut sequence witnesses the existence
of a run being both accepted by A and not satisfying ϕ.

Conclusions

This thesis work faced multiple key-aspects in the broader domain of model-based systems
veri�cation, ranging from formal speci�cation languages, with the de�nition of the
Dynamic State Machines (DSTM) modelling language in Chapter 1, to model-based testing
techniques, which as of today are considered leading-edge in industry, in Chapter 2, to
logics and model checking in Chapter 3.

During this thesis work, crucial �aws in the automatable test case generation procedure
for DSTM models devised during previous research [5, 6] were detected and addressed
by de�ning a novel procedure, as described in Chapter 2. The new procedure was also
implemented in the existing software tool for test case generation developed during
the previous research projects. Furthermore, a theoretical foundation for DSTM model
checking was laid down in Chapter 3, with the introduction of HLTLE, an extension of
the well-known Linear-time Temporal Logic (LTL) designed to expressively predicate
on linear properties of interrupting hierarchical computations. A concrete instantiation
of the logic’s semantics was given in terms of Communicating Structured Automata
with Interrupts (CSAE), which are slightly simpler machines than DSTM, but nonetheless
manage to maintain the main characteristics of concurrency, hierarchy and interrupts.
After restricting the focus to the local fragment of this logic, which is denoted by HLTLEL,
and to the sub-class of non-recursive CSAE, which are called Communicating Hierarchical
Automata (CHAE), several algorithmic results were achieved: a decision procedure for
the emptiness problem of CHAE was described in Section 3.3; an algorithm to decide
the satis�ability of an HLTLEL formulae over the class of CHAE computations was given
in Section 3.4; �nally, a model checking procedure for CHAE models against HLTLEL
properties was achieved in Section 3.5.

The natural prosecution of this research work would be the de�nition of a model
checking procedure for DSTM models and HLTLE properties, and the extension of the
existing software tool to implement model checking capabilities.

89

Appendix A

Translating DSTM models to

Promela: a complete example

A.1 The Counting DSTM model

Consider the Counting DSTM speci�cation detailed in �gure 1.1 and in table 1.1, whose
�attening is described throughout example 8. This section, in listing A.1, provides a com-
plete Promela encoding for the model, obtained as described in 2.4.5 with the addition of
the global variables and declarations required for test case generation (see 2.5).

Listing A.1 Promela speci�cation for the Counting DSTM model
1: # define MAX_PROC 4; // maximum number of concurrent processes
2: // Global variables , channels , datatypes declarations
3: byte x;
4: // Mtype declarations for each machine ’s state name
5: mtype = {initial ,idle1 ,counterBox , interrupted , stopped };
6: mtype = {default ,idle2 ,wait ,limit };
7: mtype = {byOne ,byTwo ,simpleIncr ,doubleIncr , finished };
8: // Data objects needed to properly model the system
9: bit isFirstDescent = 1;

10: bit HasToken [MAX_PROC];
11: bit HasFired = 0;
12: bit dyingPid [MAX_PROC];
13: bit HasExecuted [MAX_PROC]; // set if pid executed in current step
14: bit descendantExecuted [MAX_PROC];
15: bit updateState = 0;
16: // structure needed to keep track of the process hierarchy
17: typedef childrenArray {
18: bit children [MAX_PROC];
19: }
20: childrenArray ChildrenMatrix [MAX_PROC];
21: // global variables for test case gen.
22: mtype LastState , LastTransition ;
23:

90

Appendix A - Translating DSTM models to Promela: a complete example 91

24: proctype Main(pid parent ; mtype initial ; chan chTerm ;
25: chan chTerm_ex) {
26:
27: bit didBackProp = 0; byte i; pid pidTemp ;
28: // declare channels for termination synch. with children here
29: chan chTerm_counterBox_Counter = [1] of bit;
30: chan chTerm_chTerm_counterBox_Counter_limit = [1] of bit;
31:
32: mtype state=initial , nextState ;
33: LastState = initial ;
34:
35: do
36: // State initial
37: :: (state == initial && HasToken [_pid]) -> atomic {
38: HasToken [_pid]=0;
39: didBackProp =0;
40: if
41: // Transition T1
42: :: ((1) && ! descendantExecuted [_pid]) ->
43: state = idle1; HasFired =1;
44: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
45: LastState = state; LastTransition = T1;
46: :: else -> //no transition is executable
47: if
48: :: (! HasExecuted [_pid]) ->
49: // if this proc did not exec. in this step
50: for (i : 0 .. MAX_PROC -1) { // pass token to children
51: if
52: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
53: :: else ->skip;
54: fi;
55: }
56: :: else ->skip;
57: fi;
58: fi;
59: nextState = state; state = backProp ;
60: }
61: // State idle1
62: :: (state == idle1 && HasToken [_pid]) -> atomic {
63: HasToken [_pid]=0;
64: didBackProp =0;
65: if
66: // Transition T2
67: :: ((1) && ! descendantExecuted [_pid]) ->
68: state = counterBox ; HasFired =1;
69: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
70: LastState = state; LastTransition = T2;
71: pidTemp = run Counter (_pid ,default ,
72: chTerm_counterBox_Counter ,
73: chTerm_counterBox_Counter_limit , 100);
74: ChildrenMatrix [_pid]. children [pidTemp] = 1;
75: :: else -> //no transition is executable

Appendix A - Translating DSTM models to Promela: a complete example 92

76: if
77: :: (! HasExecuted [_pid]) ->
78: // if this proc did not exec. in this step
79: for (i : 0 .. MAX_PROC -1) { // pass token to children
80: if
81: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
82: :: else ->skip;
83: fi;
84: }
85: :: else ->skip;
86: fi;
87: fi;
88: nextState = state; state = backProp ;
89: }
90: // State counterBox
91: :: (state == counterBox && HasToken [_pid]) -> atomic {
92: HasToken [_pid]=0;
93: didBackProp =0;
94: if
95: // Transition T3 (return by interrupt)
96: :: ((signal ?) && ! descendantExecuted [_pid]) ->
97: state = interrupted ; HasFired =1;
98: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
99: LastState = state; LastTransition = T3;

100: chTerm_counterBox_Counter !<1>;
101: // Transition T4 (return by interrupt)
102: :: (chTerm_counterBox_Counter_limit [?<1>]
103: && ! descendantExecuted [_pid]) ->
104: state = stopped ; HasFired =1;
105: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
106: LastState = state; LastTransition = T4;
107: chTerm_counterBox_Counter !<1>;
108: :: else -> //no transition is executable
109: if
110: :: (! HasExecuted [_pid]) ->
111: // if this proc did not exec. in this step
112: for (i : 0 .. MAX_PROC -1) { // pass token to children
113: if
114: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
115: :: else ->skip;
116: fi;
117: }
118: :: else ->skip;
119: fi;
120: fi;
121: nextState = state; state = backProp ;
122: }
123:
124: // handle upwards propagation of descendantExecuted
125: ::(state == backProp && descendantExecuted [_pid]
126: && ! didBackProp)
127: -> { didBackProp = 1; descendantExecuted [parent] = 1 }

Appendix A - Translating DSTM models to Promela: a complete example 93

128: // handle original state restoring after backProp
129: ::(state == backProp && updateState) ->
130: { state = nextState ; didBackProp =0 }
131:
132: od unless (chTerm ?[1] || dyingPid [parent]) -> {
133: chTerm ?1; dyingPid [_pid]=1
134: }
135: }
136:
137: proctype Counter (pid parent ; mtype initial ; chan chTerm ;
138: chan chTerm_ex , int P_to) {
139:
140: bit didBackProp = 0; byte i; pid pidTemp ;
141: // declare channels for termination synch. with children here
142: chan chTerm_boxIncr1_Incrementer = [1] of bit;
143: chan chTerm_boxIncr2_Incrementer = [1] of bit;
144: chan chTerm_boxIncr1_Incrementer_finished = [1] of bit;
145: chan chTerm_boxIncr2_Incrementer_finished = [1] of bit;
146:
147: mtype state=initial , nextState ;
148: LastState = default ;
149:
150: do
151: // state default
152: :: (state == default && HasToken [_pid]) -> atomic {
153: HasToken [_pid]=0;
154: didBackProp =0;
155: if
156: // Transition T5
157: :: ((1) && ! descendantExecuted [_pid]) ->
158: state = idle2; HasFired =1;
159: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
160: LastState = state; LastTransition = T5;
161: :: else -> //no transition is executable
162: if
163: :: (! HasExecuted [_pid]) ->
164: // if this proc did not exec. in this step
165: for (i : 0 .. MAX_PROC -1) { // pass token to children
166: if
167: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
168: :: else ->skip;
169: fi;
170: }
171: :: else ->skip;
172: fi;
173: fi;
174: nextState = state; state = backProp ;
175: }
176: // state idle2
177: :: (state == idle2 && HasToken [_pid]) -> atomic {
178: HasToken [_pid]=0;
179: didBackProp =0;

Appendix A - Translating DSTM models to Promela: a complete example 94

180: if
181: // Transition T6_T7_T8
182: :: ((1) && ! descendantExecuted [_pid]) ->
183: state = wait; HasFired =1;
184: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
185: LastState = state; LastTransition = T6_T7_T8 ;
186: // run the two Incrementer machines
187: pidTemp = run Incrementer (_pid ,default ,
188: chTerm_boxIncr1_Incrementer ,
189: chTerm_boxIncr1_Incrementer_finished ,P_to);
190: ChildrenMatrix [_pid]. children [pidTemp] = 1;
191: pidTemp = run Incrementer (_pid ,default ,
192: chTerm_boxIncr2_Incrementer ,
193: chTerm_boxIncr2_Incrementer_finished ,P_to);
194: ChildrenMatrix [_pid]. children [pidTemp] = 1;
195: :: else -> //no transition is executable
196: if
197: :: (! HasExecuted [_pid]) ->
198: // if this proc did not exec. in this step
199: for (i : 0 .. MAX_PROC -1) { // pass token to children
200: if
201: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
202: :: else ->skip;
203: fi;
204: }
205: :: else ->skip;
206: fi;
207: fi;
208: nextState = state; state = backProp ;
209: }
210: // state wait
211: :: (state == wait && HasToken [_pid]) -> atomic {
212: HasToken [_pid]=0;
213: didBackProp =0;
214: if
215: // Transition T9_T10_T11
216: :: ((chTerm_boxIncr1_Incrementer_finished [? <1 >])
217: && ! descendantExecuted [_pid]) ->
218: state = limit; HasFired =1;
219: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
220: LastState = limit; LastTransition = T9_T10_T11 ;
221: // send termination message to machines
222: chTerm_boxIncr1_Incrementer !<1>;
223: chTerm_boxIncr2_Incrementer !<1>;
224: chTerm_boxIncr1_Incrementer_finished ?<_>;
225: // reached exit state
226: chTerm_ex !<1>;
227: :: else -> //no transition is executable
228: if
229: :: (! HasExecuted [_pid]) ->
230: // if this proc did not exec. in this step
231: for (i : 0 .. MAX_PROC -1) { // pass token to children

Appendix A - Translating DSTM models to Promela: a complete example 95

232: if
233: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
234: :: else ->skip;
235: fi;
236: }
237: :: else ->skip;
238: fi;
239: fi;
240: nextState = state; state = backProp ;
241: }
242:
243: // handle upwards propagation of descendantExecuted
244: ::(state == backProp && descendantExecuted [_pid]
245: && ! didBackProp)
246: -> { didBackProp = 1; descendantExecuted [parent] = 1 }
247: // handle original state restoring after backProp
248: ::(state == backProp && updateState) ->
249: { state = nextState ; didBackProp =0 }
250:
251: od unless (chTerm ?[1] || dyingPid [parent]) -> {
252: chTerm ?1; dyingPid [_pid]=1
253: }
254: }
255:
256: proctype Incrementer (pid parent ; mtype initial ; chan chTerm ;
257: chan chTerm_ex , int P_limit) {
258:
259: bit didBackProp = 0; byte i; pid pidTemp ;
260: // declare channels for termination synch. with children here
261:
262: mtype state=initial , nextState ;
263: LastState = default ;
264:
265: do
266: // state byOne
267: :: (state == byOne && HasToken [_pid]) -> atomic {
268: HasToken [_pid]=0;
269: didBackProp =0;
270: if
271: // Transition T12
272: :: ((1) && ! descendantExecuted [_pid]) ->
273: state = simpleIncr ; HasFired =1;
274: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
275: LastState = state; LastTransition = T12;
276: :: else -> //no transition is executable
277: if
278: :: (! HasExecuted [_pid]) ->
279: // if this proc did not exec. in this step
280: for (i : 0 .. MAX_PROC -1) { // pass token to children
281: if
282: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
283: :: else ->skip;

Appendix A - Translating DSTM models to Promela: a complete example 96

284: fi;
285: }
286: :: else ->skip;
287: fi;
288: fi;
289: nextState = state; state = backProp ;
290: }
291: // state byTwo
292: :: (state == byOne && HasToken [_pid]) -> atomic {
293: HasToken [_pid]=0;
294: didBackProp =0;
295: if
296: // Transition T13
297: :: ((1) && ! descendantExecuted [_pid]) ->
298: state = doubleIncr ; HasFired =1;
299: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
300: LastState = state; LastTransition = T13;
301: :: else -> //no transition is executable
302: if
303: :: (! HasExecuted [_pid]) ->
304: // if this proc did not exec. in this step
305: for (i : 0 .. MAX_PROC -1) { // pass token to children
306: if
307: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
308: :: else ->skip;
309: fi;
310: }
311: :: else ->skip;
312: fi;
313: fi;
314: nextState = state; state = backProp ;
315: }
316: // state simpleIncr
317: :: (state == simpleIncr && HasToken [_pid]) -> atomic {
318: HasToken [_pid]=0;
319: didBackProp =0;
320: if
321: // Transition T14
322: :: ((x< P_limit) && ! descendantExecuted [_pid]) ->
323: state = simpleIncr ; HasFired =1;
324: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
325: LastState = state; LastTransition = T14;
326: x++; // action
327: // Transition T16
328: :: ((x< P_limit) && ! descendantExecuted [_pid]) ->
329: state = finished ; HasFired =1;
330: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
331: LastState = state; LastTransition = T16;
332: x++; // action
333: chTerm_ex !<1>; // send termination signal
334: :: else -> //no transition is executable
335: if

Appendix A - Translating DSTM models to Promela: a complete example 97

336: :: (! HasExecuted [_pid]) ->
337: // if this proc did not exec. in this step
338: for (i : 0 .. MAX_PROC -1) { // pass token to children
339: if
340: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
341: :: else ->skip;
342: fi;
343: }
344: :: else ->skip;
345: fi;
346: fi;
347: nextState = state; state = backProp ;
348: }
349: // state doubleIncr
350: :: (state == doubleIncr && HasToken [_pid]) -> atomic {
351: HasToken [_pid]=0;
352: didBackProp =0;
353: if
354: // Transition T15
355: :: ((1) && ! descendantExecuted [_pid]) ->
356: state = doubleIncr ; HasFired =1;
357: HasExecuted [_pid]=1; descendantExecuted [_pid]=1;
358: LastState = state; LastTransition = T15;
359: x=x+2; // action
360: :: else -> //no transition is executable
361: if
362: :: (! HasExecuted [_pid]) ->
363: // if this proc did not exec. in this step
364: for (i : 0 .. MAX_PROC -1) { // pass token to children
365: if
366: ::(ChildrenMatrix [_pid]. children [i])-> HasToken [i]=1;
367: :: else ->skip;
368: fi;
369: }
370: :: else ->skip;
371: fi;
372: fi;
373: nextState = state; state = backProp ;
374: }
375: // handle upwards propagation of descendantExecuted
376: ::(state == backProp && descendantExecuted [_pid]
377: && ! didBackProp)
378: -> { didBackProp = 1; descendantExecuted [parent] = 1 }
379: // handle original state restoring after backProp
380: ::(state == backProp && updateState) ->
381: { state = nextState ; didBackProp =0 }
382:
383: od unless (chTerm ?[1] || dyingPid [parent]) -> {
384: chTerm ?1; dyingPid [_pid]=1
385: }
386: }
387:

Appendix A - Translating DSTM models to Promela: a complete example 98

388: active proctype Engine () {
389: pid PidMain ; byte i;
390: chan chTerm_Main = [1] of {bit };
391: chan chTerm_Main_exit = [1] of {bit };
392: PidMain = run Main(_pid ,initial , chTerm_Main , chTerm_Main_exit);
393: ChildrenMatrix [_pid]. children [PidMain]=1;
394:
395: nextStep : // starts a new step
396: atomic {
397: // handle external channels management
398: updateState =0
399: HasFired =0;
400: isFirstDescent =1;
401: for (i : 0 .. MAX_PROC -1){
402: HasExecuted [i]=0;
403: descendantExecuted [i]=0;
404: HasToken [i] = ChildrenMatrix [_pid]. children [i];
405: }
406: }
407: goto waitTimeout ;
408:
409: nextPhase : // starts a new phase in the current step
410: atomic {
411: updateState =0;
412: HasFired =0;
413: for (i : 0 .. MAX_PROC - 1){
414: // give token to engine ’s children
415: HasToken [i] = ChildrenMatrix [_pid]. children [i];
416: }
417: isFirstDescent = 0; //It ’s at least the second one
418: }
419: goto waitTimeout ;
420:
421: waitTimeout :
422: do
423: :: timeout -> // deadlock
424: if
425: :: (! HasFired && isFirstDescent) -> goto abort;
426: :: (! HasFired && ! isFirstDescent && ! updateState) ->
427: updateState = 1;
428: :: (! HasFired && ! isFirstDescent && updateState) ->
429: goto nextStep ;
430: :: (HasFired && ! updateState) -> updateState = 1;
431: :: (HasFired && updateState) -> goto nextPhase ;
432: fi;
433: od;
434:
435: abort:
436: dyingPid [_pid]=1;
437: }

Bibliography

[1] Edsger W. Dijkstra. “The humble programmer”. In: Communications of the ACM
15.10 (1972), pp. 859–866.

[2] Leslie Lamport and Susan Owicki. “Proving liveness properties of concurrent pro-
grams”. In: ACM Transactions on Programming Languages and Systems 4 (1982).

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

[4] Horst P�ügl, Christian El-Salloum, and Ingrid Kundner. “Crystal Critical Systems
Engineering Acceleration”. In: ARTEMIS Magazine 14 (June 2013), pp. 12–15.

[5] Massimo Benerecetti et al. “Dynamic state machines for modelling railway control
systems”. In: Science of Computer Programming 133 (2017), pp. 116–153.

[6] Roberto Nardone et al. “Modeling railway control systems in Promela”. In: Interna-
tional Workshop on Formal Techniques for Safety-Critical Systems. Springer. 2015,
pp. 121–136.

[7] Gregorio Barberio et al. “An interoperable testing environment for ERTMS-ETCS
control systems”. In: International Conference on Computer Safety, Reliability, and
Security. Springer. 2014, pp. 147–156.

[8] David Lee and Mihalis Yannakakis. “Principles and methods of testing �nite state
machines-a survey”. In: Proceedings of the IEEE 84.8 (1996), pp. 1090–1123.

[9] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science of
computer programming 8.3 (1987), pp. 231–274.

[10] Object Management Group (OMG). OMG Uni�ed Modeling Language (OMG UML),
Version 2.5.1. OMG Document Number formal/17-12-05 (https://www.omg.org/
spec/UML/2.5.1).

[11] David Harel and Amnon Naamad. “The STATEMATE semantics of statecharts”. In:
ACM Transactions on Software Engineering and Methodology (TOSEM) 5.4 (1996),
pp. 293–333.

[12] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. “Communicating Hier-
archical State Machines”. In: Automata, Languages and Programming. Ed. by Jiri
Wiedermann and Mogens van Emde Boas Peterand Nielsen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 169–178. isbn: 978-3-540-48523-0.

99

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1

Bibliography 100

[13] Rajeev Alur et al. “Analysis of Recursive State Machines”. In: ACM Trans. Program.
Lang. Syst. 27.4 (July 2005), pp. 786–818. issn: 0164-0925. doi: 10.1145/1075382.
1075387. url: http://doi.acm.org/10.1145/1075382.1075387.

[14] Edmund M Clarke and Wolfgang Heinle. Modular translation of Statecharts to SMV.
Tech. rep. Citeseer, 2000.

[15] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. “Imple-
menting statecharts in PROMELA/SPIN”. In: Industrial Strength Formal Speci�cation
Techniques, 1998. Proceedings. 2nd IEEE Workshop on. IEEE. 1998, pp. 90–101.

[16] Toni Jussila et al. “Model checking dynamic and hierarchical UML state machines”.
In: Proc. MoDeV2a: Model Development, Validation and Veri�cation (2006), pp. 94–110.

[17] Spin- Formal Veri�cation. url: http://spinroot.com/ (visited on 10/18/2018).
[18] Gerard J. Holzmann. Spin Model Checker, the: Primer and Reference Manual. First.

Addison-Wesley Professional, 2003. isbn: 0-321-22862-6.
[19] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on software

engineering 23.5 (1997), pp. 279–295.
[20] Moshe Y. Vardi and Pierre Wolper. “An automata-theoretic approach to automatic

program veri�cation”. In: Proceedings of the First Symposium on Logic in Computer
Science. IEEE Computer Society. 1986, pp. 322–331.

[21] Promela reference – never. url: http://spinroot.com/spin/Man/never.html
(visited on 10/22/2018).

[22] Rajeev Alur and Mihalis Yannakakis. “Model Checking of Hierarchical State Ma-
chines”. In: SIGSOFT Softw. Eng. Notes 23.6 (Nov. 1998), pp. 175–188. issn: 0163-5948.
doi: 10.1145/291252.288305. url: http://doi.acm.org/10.1145/291252.
288305.

[23] A. Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). Oct. 1977, pp. 46–57. doi: 10.1109/SFCS.
1977.32.

[24] Massimo Benerecetti, Ruggero Lanotte, Fabio Mogavero, and Adriano Peron. “Rea-
soning about Hierarchical Concurrent Computations”. Unpublished.

https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/1075382.1075387
http://doi.acm.org/10.1145/1075382.1075387
http://spinroot.com/
http://spinroot.com/spin/Man/never.html
https://doi.org/10.1145/291252.288305
http://doi.acm.org/10.1145/291252.288305
http://doi.acm.org/10.1145/291252.288305
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

	Introduction
	Systems verification: model-based testing and model checking
	About this thesis work

	Dynamic State Machines: a formal modelling language
	A comparison with other modelling languages
	DSTM Syntax
	Control flow
	Data flow

	DSTM Semantics
	Semantics of transition decorations
	Machine instantiation
	Semantics by means of a Labelled Transition System

	Automatic test case generation from Dynamic State Machines
	The Spin model checker and Promela: a brief introduction
	The Spin model checker
	The Promela specification language

	Deriving Promela models from DSTMs
	An overview of the translation process

	Flattening the DSTM into ordinary state machines
	Promela encoding for the flat model
	Translation of data-flow elements
	An overview of the Promela specification
	Mapping a flat DSTM to a Promela specification
	Enforcing the steps semantics
	Mapping a DSTM model to a Promela specification

	Test case generation

	Reasoning about Hierarchical Concurrent Computations with Interrupts
	Hierarchical Temporal Logic with Interrupts
	Communicating Structured Automata with Interrupts
	Deciding CHA69 emptiness
	Satisfiability of HLTL69L over hierarchical computations
	HLTL69L Model Checking

	Conclusions
	Appendix Translating DSTM models to Promela: a complete example
	The Counting DSTM model

	Bibliography

