

An Informal Introduction to
Formal Methods for Software Engineering

May 3, 2019

Luigi Libero Lucio Starace

Università degli Studi di Napoli Federico II

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

1Agenda

Software Verification

Formal Methods
Formal Specification
Formal Verification

Formal Methods in Software Engineering

Practice time!

Take Home Messages

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

1Agenda

Software Verification

Formal Methods
Formal Specification
Formal Verification

Formal Methods in Software Engineering

Practice time!

Take Home Messages

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

1Agenda

Software Verification

Formal Methods
Formal Specification
Formal Verification

Formal Methods in Software Engineering

Practice time!

Take Home Messages

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

1Agenda

Software Verification

Formal Methods
Formal Specification
Formal Verification

Formal Methods in Software Engineering

Practice time!

Take Home Messages

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

1Agenda

Software Verification

Formal Methods
Formal Specification
Formal Verification

Formal Methods in Software Engineering

Practice time!

Take Home Messages

Software Verification

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?

I Computer systems are everywhere and we depend more and
more on them;

I Malfunctions may cause financial losses

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?

I Computer systems are everywhere and we depend more and
more on them;

I Malfunctions may cause financial losses

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?
I Computer systems are everywhere and we depend more and

more on them;

I Malfunctions may cause financial losses

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?
I Computer systems are everywhere and we depend more and

more on them;
I Malfunctions may cause financial losses.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?
I Computer systems are everywhere and we depend more and

more on them;
I Malfunctions may cause financial losses or worse!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

3Software Verification
Classic techniques

I Software Testing

I dynamic analysis (software execution involved);
I a suite of test cases, each specifying inputs and expected

system behaviour, is typically produced by software testers.
I Code inspection

I static analysis (no software execution involved);
I careful scrutiny of the source code carried on by software

engineers.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

3Software Verification
Classic techniques

I Software Testing
I dynamic analysis (software execution involved);

I a suite of test cases, each specifying inputs and expected
system behaviour, is typically produced by software testers.

I Code inspection

I static analysis (no software execution involved);
I careful scrutiny of the source code carried on by software

engineers.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

3Software Verification
Classic techniques

I Software Testing
I dynamic analysis (software execution involved);
I a suite of test cases, each specifying inputs and expected

system behaviour, is typically produced by software testers.

I Code inspection

I static analysis (no software execution involved);
I careful scrutiny of the source code carried on by software

engineers.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

3Software Verification
Classic techniques

I Software Testing
I dynamic analysis (software execution involved);
I a suite of test cases, each specifying inputs and expected

system behaviour, is typically produced by software testers.
I Code inspection

I static analysis (no software execution involved);
I careful scrutiny of the source code carried on by software

engineers.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

3Software Verification
Classic techniques

I Software Testing
I dynamic analysis (software execution involved);
I a suite of test cases, each specifying inputs and expected

system behaviour, is typically produced by software testers.
I Code inspection

I static analysis (no software execution involved);

I careful scrutiny of the source code carried on by software
engineers.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

3Software Verification
Classic techniques

I Software Testing
I dynamic analysis (software execution involved);
I a suite of test cases, each specifying inputs and expected

system behaviour, is typically produced by software testers.
I Code inspection

I static analysis (no software execution involved);
I careful scrutiny of the source code carried on by software

engineers.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs.

I cannot prove their absence;
I ineffective with concurrent systems;
I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs, but...
I cannot prove their absence;

I ineffective with concurrent systems;
I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;

[...] program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.

– The humble programmer, E. W. Dijkstra [Dij72]

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs, but...
I cannot prove their absence;
I ineffective with concurrent systems;

I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;

[...] a concurrent program can withstand very careful scrutiny without re-
vealing its errors. The only way we can be sure that a concurrent program does
what we think it does is to prove rigorously that it does it.

– Proving liveness properties of concurrent programs, L. Lamport [LO82]

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs, but...
I cannot prove their absence;
I ineffective with concurrent systems;
I expensive and time-consuming.

I only feasible in later stages of the software lifecycle;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs, but...
I cannot prove their absence;
I ineffective with concurrent systems;
I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

4Software Verification
When classic techniques fall short

0

10

20

30

40

50

Time (non linear) →

In
tr

od
uc

ed
er

ro
rs

(in
%

)

0

2

4

6

8

10

12

Analysis Design Programming Unit Testing System Testing Operation

Re
pa

ir
co

st
(in

10
00

of
US

$)introduced errors (%)
detected errors (%)
repair cost per error

Figure: Error introduction, detection, and repair costs [BK08]

Formal Methods

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification

I system modelling languages;
I property specification languages.

I Formal Verification

I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification

I system modelling languages;
I property specification languages.

I Formal Verification

I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification
I system modelling languages;

I property specification languages.
I Formal Verification

I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification
I system modelling languages;
I property specification languages.

I Formal Verification

I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification
I system modelling languages;
I property specification languages.

I Formal Verification

I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification
I system modelling languages;
I property specification languages.

I Formal Verification
I deductive verification (theorem proving);

I automatic verification (model checking).
I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification
I system modelling languages;
I property specification languages.

I Formal Verification
I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification
I system modelling languages;
I property specification languages.

I Formal Verification
I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

6Formal Specification: Models
Transition Systems (TS)

wait

start

select

coffee tea

I the set of states is called state space.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;

I formally-defined syntax and semantics;
I “As simple as possible, as rich as needed” [Gli]

I describe relevant aspects in a “natural” way;
I trade-off between expressivity and analysis complexity;
I using TS to model complex systems may be a bad idea: often

higher-level languages are used instead.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;
I formally-defined syntax and semantics;

I “As simple as possible, as rich as needed” [Gli]

I describe relevant aspects in a “natural” way;
I trade-off between expressivity and analysis complexity;
I using TS to model complex systems may be a bad idea: often

higher-level languages are used instead.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;
I formally-defined syntax and semantics;

I “As simple as possible, as rich as needed” [Gli]

I describe relevant aspects in a “natural” way;
I trade-off between expressivity and analysis complexity;
I using TS to model complex systems may be a bad idea: often

higher-level languages are used instead.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;
I formally-defined syntax and semantics;

I “As simple as possible, as rich as needed” [Gli]
I describe relevant aspects in a “natural” way;

I trade-off between expressivity and analysis complexity;
I using TS to model complex systems may be a bad idea: often

higher-level languages are used instead.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;
I formally-defined syntax and semantics;

I “As simple as possible, as rich as needed” [Gli]
I describe relevant aspects in a “natural” way;
I trade-off between expressivity and analysis complexity;

I using TS to model complex systems may be a bad idea: often
higher-level languages are used instead.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;
I formally-defined syntax and semantics;

I “As simple as possible, as rich as needed” [Gli]
I describe relevant aspects in a “natural” way;
I trade-off between expressivity and analysis complexity;
I using TS to model complex systems may be a bad idea: often

higher-level languages are used instead.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;

I Hierarchical Machines;
I Dynamic State Machines;
I Promela.

Semantics can be defined in
terms of transition systems.

wait

select

insert coin()

coffee

prepare

cup heat

/erogate()

coffee btn()

get coffee()

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;
I Hierarchical Machines;

I Dynamic State Machines;
I Promela.

Semantics can be defined in
terms of transition systems.

B
[B,B]

P
S

Q

(R, R) (T ,T)

A

Y

X
R T

B

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;
I Hierarchical Machines;
I Dynamic State Machines;

I Promela.

Semantics can be defined in
terms of transition systems.

default
waiting

fk boxIncr
[Incrementer]

jn

T1 T2

T3

T4

T5

T6

T7

Dynamic

byOne

byTwo

simpleIncr

doubleIncr

finished

T12

T13
T14

T15

T16

Incrementer

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;
I Hierarchical Machines;
I Dynamic State Machines;
I Promela.

Semantics can be defined in
terms of transition systems.

1 active proctype A(){

2 do

3 :: (1) -> a=0;

4 :: (1) -> run B();

5 od

6 }

7
8 proctype B() {

9 /*...*/

10 }

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;
I Hierarchical Machines;
I Dynamic State Machines;
I Promela.

Semantics can be defined in
terms of transition systems.

1 active proctype A(){

2 do

3 :: (1) -> a=0;

4 :: (1) -> run B();

5 od

6 }

7
8 proctype B() {

9 /*...*/

10 }

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts1;
I Hierarchical Machines2;
I Dynamic State Machines3;
I Promela4.

Semantics can be defined in
terms of transition systems.

1 active proctype A(){

2 do

3 :: (1) -> a=0;

4 :: (1) -> run B();

5 od

6 }

7
8 proctype B() {

9 /*...*/

10 }

1see Harel et al., [Har87; HN96]
2see Alur et al., [AKY99]
3see Benerecetti et al., [Ben+17]
4see [PRO]

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

9Formal Specification: Properties
System Behaviours

s1 s2 s3

s4 s5

Possible behaviours:

I π1 = s1 → s2 → s3 → s3 → s3 → s3 → . . . s1 s2 (s3)
ω

I π2 = s1 → s2 → s3 → s1 → s2 → s3 → . . . (s1 s2 s3)
ω

I π3 = s1 → s4 → s2 → s5 → s3 → s3 → . . . s1 s4 s2 s5 (s3)
ω

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

9Formal Specification: Properties
System Behaviours

s1 s2 s3

s4 s5

Possible behaviours:

I π1 = s1 → s2 → s3 → s3 → s3 → s3 → . . . s1 s2 (s3)
ω

I π2 = s1 → s2 → s3 → s1 → s2 → s3 → . . . (s1 s2 s3)
ω

I π3 = s1 → s4 → s2 → s5 → s3 → s3 → . . . s1 s4 s2 s5 (s3)
ω

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

9Formal Specification: Properties
System Behaviours

s1 s2 s3

s4 s5

Possible behaviours:
I π1 = s1 → s2 → s3 → s3 → s3 → s3 → . . . s1 s2 (s3)

ω

I π2 = s1 → s2 → s3 → s1 → s2 → s3 → . . . (s1 s2 s3)
ω

I π3 = s1 → s4 → s2 → s5 → s3 → s3 → . . . s1 s4 s2 s5 (s3)
ω

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

9Formal Specification: Properties
System Behaviours

s1 s2 s3

s4 s5

Possible behaviours:
I π1 = s1 → s2 → s3 → s3 → s3 → s3 → . . . s1 s2 (s3)

ω

I π2 = s1 → s2 → s3 → s1 → s2 → s3 → . . . (s1 s2 s3)
ω

I π3 = s1 → s4 → s2 → s5 → s3 → s3 → . . . s1 s4 s2 s5 (s3)
ω

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

9Formal Specification: Properties
System Behaviours

s1 s2 s3

s4 s5

Possible behaviours:
I π1 = s1 → s2 → s3 → s3 → s3 → s3 → . . . s1 s2 (s3)

ω

I π2 = s1 → s2 → s3 → s1 → s2 → s3 → . . . (s1 s2 s3)
ω

I π3 = s1 → s4 → s2 → s5 → s3 → s3 → . . . s1 s4 s2 s5 (s3)
ω

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

10Formal Specification
Temporal logics: timeline

One way of formally specifying properties of behaviours is using
temporal logics.

A great deal of temporal logics have been proposed in the literature:

I LTL (Linear-time Temporal Logic) was introduced by Pnueli in
1977 [Pnu77];

I CTL, CTL* (Computation Tree Logic), a branching-time temporal
logic;

I others (CaReT [AEM04], HLTLE, ...).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

10Formal Specification
Temporal logics: timeline

One way of formally specifying properties of behaviours is using
temporal logics.
A great deal of temporal logics have been proposed in the literature:

I LTL (Linear-time Temporal Logic) was introduced by Pnueli in
1977 [Pnu77];

I CTL, CTL* (Computation Tree Logic), a branching-time temporal
logic;

I others (CaReT [AEM04], HLTLE, ...).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

10Formal Specification
Temporal logics: timeline

One way of formally specifying properties of behaviours is using
temporal logics.
A great deal of temporal logics have been proposed in the literature:

I LTL (Linear-time Temporal Logic) was introduced by Pnueli in
1977 [Pnu77];

I CTL, CTL* (Computation Tree Logic), a branching-time temporal
logic;

I others (CaReT [AEM04], HLTLE, ...).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

10Formal Specification
Temporal logics: timeline

One way of formally specifying properties of behaviours is using
temporal logics.
A great deal of temporal logics have been proposed in the literature:

I LTL (Linear-time Temporal Logic) was introduced by Pnueli in
1977 [Pnu77];

I CTL, CTL* (Computation Tree Logic), a branching-time temporal
logic;

I others (CaReT [AEM04], HLTLE, ...).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

10Formal Specification
Temporal logics: timeline

One way of formally specifying properties of behaviours is using
temporal logics.
A great deal of temporal logics have been proposed in the literature:

I LTL (Linear-time Temporal Logic) was introduced by Pnueli in
1977 [Pnu77];

I CTL, CTL* (Computation Tree Logic), a branching-time temporal
logic;

I others (CaReT [AEM04], HLTLE, ...).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

11Formal Specification
LTL Syntax

LTL extends propositional logic with temporal modalities.

LTL syntax
LTL formulae over the setAP of atomic proposition are formed
according to the following grammar:

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ

with a ∈ AP .

LTL formulae are interpreted over system behaviours.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

11Formal Specification
LTL Syntax

LTL extends propositional logic with temporal modalities.

LTL syntax
LTL formulae over the setAP of atomic proposition are formed
according to the following grammar:

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ

with a ∈ AP .

LTL formulae are interpreted over system behaviours.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

11Formal Specification
LTL Syntax

LTL extends propositional logic with temporal modalities.

LTL syntax
LTL formulae over the setAP of atomic proposition are formed
according to the following grammar:

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ

with a ∈ AP .

LTL formulae are interpreted over system behaviours.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

12Formal Specification
From Transition Systems to Kripke Structures

s1 s2 s3

s4 s5

I we associate a set of atomic propositions to each TS state;
I a state s is labelled with the atomic proposition a iff a holds in s;
I in the above example,AP = {p, q};
I π1 = {p} → {p, q} → {q} → {q} → {q} → {q} → {q} → . . .

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

12Formal Specification
From Transition Systems to Kripke Structures

{p } {p, q } {q }

{p, q } �

I we associate a set of atomic propositions to each TS state;

I a state s is labelled with the atomic proposition a iff a holds in s;
I in the above example,AP = {p, q};
I π1 = {p} → {p, q} → {q} → {q} → {q} → {q} → {q} → . . .

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

12Formal Specification
From Transition Systems to Kripke Structures

{p } {p, q } {q }

{p, q } �

I we associate a set of atomic propositions to each TS state;
I a state s is labelled with the atomic proposition a iff a holds in s;

I in the above example,AP = {p, q};
I π1 = {p} → {p, q} → {q} → {q} → {q} → {q} → {q} → . . .

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

12Formal Specification
From Transition Systems to Kripke Structures

{p } {p, q } {q }

{p, q } �

I we associate a set of atomic propositions to each TS state;
I a state s is labelled with the atomic proposition a iff a holds in s;
I in the above example,AP = {p, q};

I π1 = {p} → {p, q} → {q} → {q} → {q} → {q} → {q} → . . .

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

12Formal Specification
From Transition Systems to Kripke Structures

{p } {p, q } {q }

{p, q } �

I we associate a set of atomic propositions to each TS state;
I a state s is labelled with the atomic proposition a iff a holds in s;
I in the above example,AP = {p, q};
I π1 = {p} → {p, q} → {q} → {q} → {q} → {q} → {q} → . . .

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

13Formal Specification
LTL Semantics – Part 1

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

Given a Kripke Structure behaviour π = π1 → π2 → . . . , with
πi ∈ ℘(AP), and LTL formula φ, the satisfaction relation π � φ is
defined inductively as follows:

I π � >;
I π � a ∈ AP iff a ∈ π1;
I π � ¬φ iff π 6� φ;
I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

13Formal Specification
LTL Semantics – Part 1

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

Given a Kripke Structure behaviour π = π1 → π2 → . . . , with
πi ∈ ℘(AP), and LTL formula φ, the satisfaction relation π � φ is
defined inductively as follows:
I π � >;

I π � a ∈ AP iff a ∈ π1;
I π � ¬φ iff π 6� φ;
I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

13Formal Specification
LTL Semantics – Part 1

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

Given a Kripke Structure behaviour π = π1 → π2 → . . . , with
πi ∈ ℘(AP), and LTL formula φ, the satisfaction relation π � φ is
defined inductively as follows:
I π � >;
I π � a ∈ AP iff a ∈ π1;

I π � ¬φ iff π 6� φ;
I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

13Formal Specification
LTL Semantics – Part 1

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

Given a Kripke Structure behaviour π = π1 → π2 → . . . , with
πi ∈ ℘(AP), and LTL formula φ, the satisfaction relation π � φ is
defined inductively as follows:
I π � >;
I π � a ∈ AP iff a ∈ π1;
I π � ¬φ iff π 6� φ;

I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

13Formal Specification
LTL Semantics – Part 1

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

Given a Kripke Structure behaviour π = π1 → π2 → . . . , with
πi ∈ ℘(AP), and LTL formula φ, the satisfaction relation π � φ is
defined inductively as follows:
I π � >;
I π � a ∈ AP iff a ∈ π1;
I π � ¬φ iff π 6� φ;
I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

14Formal Specification
LTL Semantics – Part 2

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

I π � Xφ iff φ holds in the next moment in time;
π1 π2

φ

π3 π4

I π � φ1 Uφ2 iff φ2 holds in a future moment, and φ1 is true until φ2
holds;

π1

φ1

π2

φ1

π3

φ1

πi−1

φ1

πi

φ2

πi+2

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

14Formal Specification
LTL Semantics – Part 2

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

I π � Xφ iff φ holds in the next moment in time;
π1 π2

φ

π3 π4

I π � φ1 Uφ2 iff φ2 holds in a future moment, and φ1 is true until φ2
holds;

π1

φ1

π2

φ1

π3

φ1

πi−1

φ1

πi

φ2

πi+2

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

15Formal Specification
LTL Semantics – Part 3

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

I π � Fφ iff φfinally holds sometime in the future;
π1 π2 π3 πi−1 πi

φ

πi+2

I π � Gφ iff φ holds globally (now and in every future moment);
π1

φ

π2

φ

π3

φ

πi−1

φ

πi

φ

πi+2

φ

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

15Formal Specification
LTL Semantics – Part 3

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

I π � Fφ iff φfinally holds sometime in the future;
π1 π2 π3 πi−1 πi

φ

πi+2

I π � Gφ iff φ holds globally (now and in every future moment);
π1

φ

π2

φ

π3

φ

πi−1

φ

πi

φ

πi+2

φ

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

16The LTL Model Checking problem

Given a Kripke StructureM and an LTL formula φ, we say that

M � φ

iff π � φ, for each behaviour π ofM.

LTL Model Checking
The Model Checking problem amounts to decide whetherM � φ.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

16The LTL Model Checking problem

Given a Kripke StructureM and an LTL formula φ, we say that

M � φ

iff π � φ, for each behaviour π ofM.

LTL Model Checking
The Model Checking problem amounts to decide whetherM � φ.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M
?

� q ∨ Xq

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M � q ∨ Xq

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M
?

� G(p ∨ q)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M 2 G(p ∨ q)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M
?

� G((p ∧ q)⇒ Xq)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M 2 G((p ∧ q)⇒ Xq)

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M
?

� GFq

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M � GFq

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M
?

� ¬FGq

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

17The LTL Model Checking problem
Some examples

{p } {p, q } {q }

{p, q } �

Figure: The Kripke Structure M

M 2 ¬FGq

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

18The dream of Automatic Verification

Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;

end

end
return x+ y;

Program

Properties

Yes!

Nope!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

19The dream of Automatic Verification
Achievable?

Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;

end

end
return x+ y;

Program

Properties

Yes!

Nope!

I we know that some properties of programs are undecidable, e.g.
termination! (remember the halting problem?)

I perhaps other interesting properties are decidable?

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

19The dream of Automatic Verification
Achievable?

Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;

end

end
return x+ y;

Program

Properties

Yes!

Nope!

I we know that some properties of programs are undecidable, e.g.
termination! (remember the halting problem?)

I perhaps other interesting properties are decidable?

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

19The dream of Automatic Verification
Achievable?

Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;

end

end
return x+ y;

Program

Properties

Yes!

Nope!

I we know that some properties of programs are undecidable, e.g.
termination! (remember the halting problem?)

I perhaps other interesting properties are decidable? Bad news...

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

20The foundamental limit
Undecidability

Rice’s theorem [RVG]
Every non-trivial semantic property of programs is undecidable.

I a property is non-trivial if it neither is true for every program nor
it’s false for every program;

I a semantic property is one about the program’s behaviour.

An example
The property of returning 0 for some input is undecidable by Rice’s
Theorem.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

20The foundamental limit
Undecidability

Rice’s theorem [RVG]
Every non-trivial semantic property of programs is undecidable.

I a property is non-trivial if it neither is true for every program nor
it’s false for every program;

I a semantic property is one about the program’s behaviour.

An example
The property of returning 0 for some input is undecidable by Rice’s
Theorem.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

21The foundamental limit
Undecidability

Implicit in Rice’s Theorem is an idealized program model.
I Turing Machines have unbounded memory;
I A variable in Martin Davis’ S programs can be incremented

indefinitely and never overflows;

Concrete computing devices have bounded resources!

The model checking problem is decidable if we restrict ourselves to
finite-state models.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

21The foundamental limit
Undecidability

Implicit in Rice’s Theorem is an idealized program model.
I Turing Machines have unbounded memory;
I A variable in Martin Davis’ S programs can be incremented

indefinitely and never overflows;

Concrete computing devices have bounded resources!

The model checking problem is decidable if we restrict ourselves to
finite-state models.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

22Automatic Verification
Model Checkers

Model CheckerFinite State ModelM

Properties (e.g. LTL)

M � Properties

M 2 Properties
+counter-example

Some well-known model checkers are [SPIN], [nuSMV], [TLC], [JPF].

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

22Automatic Verification
Model Checkers

Model CheckerFinite State ModelM

Properties (e.g. LTL)

M � Properties

M 2 Properties
+counter-example

Some well-known model checkers are [SPIN], [nuSMV], [TLC], [JPF].

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

23The practical limit
State space explosion

I A finite state space can always be generated and explored in
finite time.

I Unfortunately, this does not mean that doing so is always
feasible, as the state space can get very large!

I 1KB of memory (1 000 B) yields 28000 ≈ 102408 states;
I 10 double variables (64 bit each) yield 210×64 ≈ 10192 states;
I optimistic limit for a model checker? 10100 states [Kwo00].

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

23The practical limit
State space explosion

I A finite state space can always be generated and explored in
finite time.

I Unfortunately, this does not mean that doing so is always
feasible, as the state space can get very large!

I 1KB of memory (1 000 B) yields 28000 ≈ 102408 states;
I 10 double variables (64 bit each) yield 210×64 ≈ 10192 states;
I optimistic limit for a model checker? 10100 states [Kwo00].

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

23The practical limit
State space explosion

I A finite state space can always be generated and explored in
finite time.

I Unfortunately, this does not mean that doing so is always
feasible, as the state space can get very large!

I 1KB of memory (1 000 B) yields 28000 ≈ 102408 states;

I 10 double variables (64 bit each) yield 210×64 ≈ 10192 states;
I optimistic limit for a model checker? 10100 states [Kwo00].

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

23The practical limit
State space explosion

I A finite state space can always be generated and explored in
finite time.

I Unfortunately, this does not mean that doing so is always
feasible, as the state space can get very large!

I 1KB of memory (1 000 B) yields 28000 ≈ 102408 states;
I 10 double variables (64 bit each) yield 210×64 ≈ 10192 states;

I optimistic limit for a model checker? 10100 states [Kwo00].

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

23The practical limit
State space explosion

I A finite state space can always be generated and explored in
finite time.

I Unfortunately, this does not mean that doing so is always
feasible, as the state space can get very large!

I 1KB of memory (1 000 B) yields 28000 ≈ 102408 states;
I 10 double variables (64 bit each) yield 210×64 ≈ 10192 states;
I optimistic limit for a model checker? 10100 states [Kwo00].

Formal Methods in Software Engineering

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

24Using Formal Methods (FM)

I FM can be used along with traditional development
methodologies.

I During Analysis and Design, FM can:
I be a solid foundation for describing complex systems;
I help with early detection of faults.

I During Development, FM can:
I provide support with synthesis techniques.

I During Verification, FM can:
I increase the confidence on system reliability;
I help with traditional verification techniques (e.g. test case

generation).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

24Using Formal Methods (FM)

I FM can be used along with traditional development
methodologies.

I During Analysis and Design, FM can:
I be a solid foundation for describing complex systems;
I help with early detection of faults.

I During Development, FM can:
I provide support with synthesis techniques.

I During Verification, FM can:
I increase the confidence on system reliability;
I help with traditional verification techniques (e.g. test case

generation).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

24Using Formal Methods (FM)

I FM can be used along with traditional development
methodologies.

I During Analysis and Design, FM can:
I be a solid foundation for describing complex systems;
I help with early detection of faults.

I During Development, FM can:
I provide support with synthesis techniques.

I During Verification, FM can:
I increase the confidence on system reliability;
I help with traditional verification techniques (e.g. test case

generation).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

24Using Formal Methods (FM)

I FM can be used along with traditional development
methodologies.

I During Analysis and Design, FM can:
I be a solid foundation for describing complex systems;
I help with early detection of faults.

I During Development, FM can:
I provide support with synthesis techniques.

I During Verification, FM can:
I increase the confidence on system reliability;
I help with traditional verification techniques (e.g. test case

generation).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

25The Model Checking process

Model + Properties

System + Requirements

Model
Checker

Done

Analysis
Reduce

Model Size
(e.g. abstract)

Refine

modelling

properties satisfied

properties violated
counter-example

Out of memory/time

inconsistency

modelling error

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];

I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);
I Formal Methods and Model Checking (using TLC).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];
I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);
I Formal Methods and Model Checking (using TLC).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];
I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);
I Formal Methods and Model Checking (using TLC).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];
I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);
I Formal Methods and Model Checking (using TLC).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];
I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);

I Formal Methods and Model Checking (using TLC).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];
I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);
I Formal Methods and Model Checking (using TLC).

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

27A success story
Formal Methods at Amazon Web Services – part 2

I In two week, they learned how to use TLA+/TLC and wrote a
detailed specification;

I Model-checked the specification using 10 EC2 instances, each
with 8 cores plus hyperthreads, and 23 GB of RAM;

I Found a data-loss bug if a particular sequence of failures and
recovery steps was interleaved with other processing; the
shortest error trace exhibiting the bug contained 35 high-level
steps.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

27A success story
Formal Methods at Amazon Web Services – part 2

I In two week, they learned how to use TLA+/TLC and wrote a
detailed specification;

I Model-checked the specification using 10 EC2 instances, each
with 8 cores plus hyperthreads, and 23 GB of RAM;

I Found a data-loss bug if a particular sequence of failures and
recovery steps was interleaved with other processing; the
shortest error trace exhibiting the bug contained 35 high-level
steps.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

27A success story
Formal Methods at Amazon Web Services – part 2

I In two week, they learned how to use TLA+/TLC and wrote a
detailed specification;

I Model-checked the specification using 10 EC2 instances, each
with 8 cores plus hyperthreads, and 23 GB of RAM;

I Found a data-loss bug if a particular sequence of failures and
recovery steps was interleaved with other processing; the
shortest error trace exhibiting the bug contained 35 high-level
steps.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

28A success story
Formal Methods at Amazon Web Services – part 3

I This success led to management advocating TLA+ to other teams
working on other products;

Product Component Benefits

DynamoDB Replication & group-
membership system

Found 3 bugs.

S3 Fault-tolerant low-level
network algorithm

Found 2 bugs. Found further
bugs in proposed optimizations.

Background redistribu-
tion of data

Found 1 bug, and found a bug in
the first proposed fix.

EBS Volume management Found 3 bugs.

Table: Benefits of using Formal Methods on different products at AWS

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

29Model Checking: weaknesses

I Limits: may be undecidable or unfeasible (state space explosion);

I It verifies a model, and not the actual system itself; the results are
only as good as the model.

I Requires expertise in finding adequate abstractions and stating
properties;

I As with any tool, a model checker may contain software defects!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

29Model Checking: weaknesses

I Limits: may be undecidable or unfeasible (state space explosion);
I It verifies a model, and not the actual system itself; the results are

only as good as the model.

I Requires expertise in finding adequate abstractions and stating
properties;

I As with any tool, a model checker may contain software defects!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

29Model Checking: weaknesses

I Limits: may be undecidable or unfeasible (state space explosion);
I It verifies a model, and not the actual system itself; the results are

only as good as the model.
I Requires expertise in finding adequate abstractions and stating

properties;

I As with any tool, a model checker may contain software defects!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

29Model Checking: weaknesses

I Limits: may be undecidable or unfeasible (state space explosion);
I It verifies a model, and not the actual system itself; the results are

only as good as the model.
I Requires expertise in finding adequate abstractions and stating

properties;
I As with any tool, a model checker may contain software defects!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

30Model Checking: strenghts

I Can provide a significant increase in the level of confidence of
system correctness;

I It is a potential “push-button” technology;
I It can be easily integrated in existing development

methodologies;
I It provides useful diagnostic counter-examples in case a property

is violated;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

30Model Checking: strenghts

I Can provide a significant increase in the level of confidence of
system correctness;

I It is a potential “push-button” technology;

I It can be easily integrated in existing development
methodologies;

I It provides useful diagnostic counter-examples in case a property
is violated;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

30Model Checking: strenghts

I Can provide a significant increase in the level of confidence of
system correctness;

I It is a potential “push-button” technology;
I It can be easily integrated in existing development

methodologies;

I It provides useful diagnostic counter-examples in case a property
is violated;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

30Model Checking: strenghts

I Can provide a significant increase in the level of confidence of
system correctness;

I It is a potential “push-button” technology;
I It can be easily integrated in existing development

methodologies;
I It provides useful diagnostic counter-examples in case a property

is violated;

Practice time!

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

31A concurrent program

process P0 {
while(true){
// noncritical section
flag_0 = 1;
while (flag_1) {}
// critical section
flag_0 = 0;
// noncritical section

}
}

process P1 {
while(true){
// noncritical section
flag_1 = 1;
while (flag_0) {}
// critical section
flag_1 = 0;
// noncritical section

}
}

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

32A concurrent program
Modelling

process P0 {
while(true){
// noncritical section
flag_0 = 1;
while (flag_1) {}
// critical section
flag_0 = 0;
// noncritical section

}
}

NC0

W0

CR0

flag 0← 1

[!flag 1]

[flag 1]
flag 0← 0

Figure: Model for process P0

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

33A concurrent program
Modelling

NC0

W0

CR0

flag 0← 1

[!flag 1]

[flag 1]
flag 0← 0

Figure: Model for process P0

NC1

W1

CR1

flag 1← 1

[!flag 0]

[flag 0]
flag 1← 0

Figure: Model for process P1

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

34A concurrent program
Modelling: parallel composition

NC0,NC1

W0,NC1 NC0,W1W0,W1

CR0,CR1
CR0,NC1 NC0,CR1

W0,CR1CR0,W1

flag 0=1 flag 1=1

flag 1=1

[!flag 1]

flag 0=1

[!flag 0]

Figure: Asynchronous parallel composition of P0 and P1

Demo time
Model Checking with Spin/Promela

Take Home Messages

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35Take-home Messages

I Traditional verification techniques (and their limits);

I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);
I System Verification (Model Checking);

I Using Formal Methods;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35Take-home Messages

I Traditional verification techniques (and their limits);
I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);
I System Verification (Model Checking);

I Using Formal Methods;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35Take-home Messages

I Traditional verification techniques (and their limits);
I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);
I System Verification (Model Checking);

I Using Formal Methods;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35Take-home Messages

I Traditional verification techniques (and their limits);
I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);

I System Verification (Model Checking);
I Using Formal Methods;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35Take-home Messages

I Traditional verification techniques (and their limits);
I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);
I System Verification (Model Checking);

I Using Formal Methods;

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35Take-home Messages

I Traditional verification techniques (and their limits);
I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);
I System Verification (Model Checking);

I Using Formal Methods;

Any questions?

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35References I

[AEM04] Rajeev Alur, Kousha Etessami, and
Parthasarathy Madhusudan. “A temporal logic of nested
calls and returns”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems.
Springer. 2004, pp. 467–481.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis.
“Communicating hierarchical state machines”. In:
International Colloquium on Automata, Languages, and
Programming. Springer. 1999, pp. 169–178.

[Ben+17] Massimo Benerecetti et al. “Dynamic state machines for
modelling railway control systems”. In: Science of Computer
Programming 133 (2017), pp. 116–153.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. Vol. 26202649. Jan. 2008. isbn:
978-0-262-02649-9.

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35References II

[Dij72] E. W. Dijkstra. “The humble programmer [1972 ACM
Turing Award Lecture]”. In: Communications of the ACM
15.10 (1972), pp. 859–866.

[Gli] Martin Glinz. “Statecharts for requirements
specification-as simple as possible, as rich as needed”. In:

[Har87] David Harel. “Statecharts: A visual formalism for complex
systems”. In: Science of computer programming 8.3 (1987),
pp. 231–274.

[HN96] David Harel and Amnon Naamad. “The STATEMATE
semantics of statecharts”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 5.4 (1996),
pp. 293–333.

[JPF] JPF - Java PathFinder. url:
http://javapathfinder.sourceforge.net/.

http://javapathfinder.sourceforge.net/

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35References III

[Kwo00] Gihwon Kwon. “Rewrite Rules and Operational Semantics
for Model Checking UML Statecharts”. In: <UML> 2000 —
The Unified Modeling Language. Ed. by Andy Evans,
Stuart Kent, and Bran Selic. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 528–540. isbn:
978-3-540-40011-0.

[LO82] Leslie Lamport and Susan Owicki. “Proving liveness
properties of concurrent programs”. In: ACM Transactions
on Programming Languages and Systems 4 (1982).

[New+14] Chris Newcombe et al. “Use of formal methods at Amazon
Web Services”. In: (2014).

[nuSMV] nuSMV home page. url: http://nusmv.fbk.eu/.
[Pnu77] A. Pnueli. “The temporal logic of programs”. In: 18th

Annual Symposium on Foundations of Computer Science (sfcs
1977). Oct. 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32.

http://nusmv.fbk.eu/
https://doi.org/10.1109/SFCS.1977.32

Luigi Libero Lucio Starace | Formal Methods for Software Engineering

35References IV

[PRO] Promela Language Reference. url:
http://spinroot.com/spin/Man/promela.html
(visited on 05/05/2019).

[RVG] Rob van Glabbeek. Rice’s theorem. url: http://kilby.
stanford.edu/~rvg/154/handouts/Rice.html.

[SPIN] SPIN - Formal Verification. url:
http://spinroot.com/spin/whatispin.html.

[TLC] Leslie Lamport. The TLA+ Home Page. url:
http://lamport.azurewebsites.net/tla/tla.html.

http://spinroot.com/spin/Man/promela.html
http://kilby.stanford.edu/~rvg/154/handouts/Rice.html
http://kilby.stanford.edu/~rvg/154/handouts/Rice.html
http://spinroot.com/spin/whatispin.html
http://lamport.azurewebsites.net/tla/tla.html

	Software Verification
	Formal Methods
	Formal Specification
	Formal Verification

	Formal Methods in Software Engineering
	Practice time!
	Take Home Messages

