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2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?

I Computer systems are everywhere and we depend more and
more on them;

I Malfunctions may cause financial losses
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2Software Verification
What it’s all about

Software Verification
The process of checking that a system meets certain requirements
derived from a given specification.

Why should we care?
I Computer systems are everywhere and we depend more and

more on them;
I Malfunctions may cause financial losses or worse!
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3Software Verification
Classic techniques

I Software Testing

I dynamic analysis (software execution involved);
I a suite of test cases, each specifying inputs and expected

system behaviour, is typically produced by software testers.
I Code inspection

I static analysis (no software execution involved);
I careful scrutiny of the source code carried on by software

engineers.
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4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs.

I cannot prove their absence;
I ineffective with concurrent systems;
I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;
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4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs, but...
I cannot prove their absence;

I ineffective with concurrent systems;
I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;

[...] program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.

– The humble programmer, E. W. Dijkstra [Dij72]
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4Software Verification
When classic techniques fall short

Testing and code inspection are very effective at detecting bugs, but...
I cannot prove their absence;
I ineffective with concurrent systems;

I expensive and time-consuming.
I only feasible in later stages of the software lifecycle;

[...] a concurrent program can withstand very careful scrutiny without re-
vealing its errors. The only way we can be sure that a concurrent program does
what we think it does is to prove rigorously that it does it.

– Proving liveness properties of concurrent programs, L. Lamport [LO82]
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Figure: Error introduction, detection, and repair costs [BK08]
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5Formal Methods

Formal Methods [BK08]
Formal methods can be considered as the applied mathematics for
modelling and analyzing ICT systems.

I Formal Specification

I system modelling languages;
I property specification languages.

I Formal Verification

I deductive verification (theorem proving);
I automatic verification (model checking).

I Others (formal synthesis)
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6Formal Specification: Models
Transition Systems (TS)

wait

start

select

coffee tea

I the set of states is called state space.
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7Formal Specification: Models
Modelling Languages: features

I Precise and Unambiguous;

I formally-defined syntax and semantics;
I “As simple as possible, as rich as needed” [Gli]

I describe relevant aspects in a “natural” way;
I trade-off between expressivity and analysis complexity;
I using TS to model complex systems may be a bad idea: often

higher-level languages are used instead.
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8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;

I Hierarchical Machines;
I Dynamic State Machines;
I Promela.

Semantics can be defined in
terms of transition systems.

wait

select

insert coin()

coffee

prepare

cup heat

/erogate()

coffee btn()

get coffee()
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8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts;
I Hierarchical Machines;
I Dynamic State Machines;
I Promela.

Semantics can be defined in
terms of transition systems.

1 active proctype A(){

2 do

3 :: (1) -> a=0;

4 :: (1) -> run B();

5 od

6 }

7
8 proctype B() {

9 /*...*/

10 }
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8Formal Specification: Models
Higher-level Modelling Languages: examples

I Statecharts1;
I Hierarchical Machines2;
I Dynamic State Machines3;
I Promela4.

Semantics can be defined in
terms of transition systems.

1 active proctype A(){

2 do

3 :: (1) -> a=0;

4 :: (1) -> run B();

5 od

6 }

7
8 proctype B() {

9 /*...*/

10 }

1see Harel et al., [Har87; HN96]
2see Alur et al., [AKY99]
3see Benerecetti et al., [Ben+17]
4see [PRO]
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9Formal Specification: Properties
System Behaviours

s1 s2 s3

s4 s5

Possible behaviours:

I π1 = s1 → s2 → s3 → s3 → s3 → s3 → . . . s1 s2 (s3)
ω

I π2 = s1 → s2 → s3 → s1 → s2 → s3 → . . . (s1 s2 s3)
ω

I π3 = s1 → s4 → s2 → s5 → s3 → s3 → . . . s1 s4 s2 s5 (s3)
ω
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10Formal Specification
Temporal logics: timeline

One way of formally specifying properties of behaviours is using
temporal logics.

A great deal of temporal logics have been proposed in the literature:

I LTL (Linear-time Temporal Logic) was introduced by Pnueli in
1977 [Pnu77];

I CTL, CTL* (Computation Tree Logic), a branching-time temporal
logic;

I others (CaReT [AEM04], HLTLE, ...).
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11Formal Specification
LTL Syntax

LTL extends propositional logic with temporal modalities.

LTL syntax
LTL formulae over the setAP of atomic proposition are formed
according to the following grammar:

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ

with a ∈ AP .

LTL formulae are interpreted over system behaviours.
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12Formal Specification
From Transition Systems to Kripke Structures

s1 s2 s3

s4 s5

I we associate a set of atomic propositions to each TS state;
I a state s is labelled with the atomic proposition a iff a holds in s;
I in the above example,AP = {p, q};
I π1 = {p} → {p, q} → {q} → {q} → {q} → {q} → {q} → . . .
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13Formal Specification
LTL Semantics – Part 1

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

Given a Kripke Structure behaviour π = π1 → π2 → . . . , with
πi ∈ ℘(AP), and LTL formula φ, the satisfaction relation π � φ is
defined inductively as follows:

I π � >;
I π � a ∈ AP iff a ∈ π1;
I π � ¬φ iff π 6� φ;
I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;
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I π � >;
I π � a ∈ AP iff a ∈ π1;
I π � ¬φ iff π 6� φ;
I π � φ1 ∧ φ2 iff π � φ1 and π � φ2;
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14Formal Specification
LTL Semantics – Part 2

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

I π � Xφ iff φ holds in the next moment in time;
π1 π2

φ

π3 π4

I π � φ1 Uφ2 iff φ2 holds in a future moment, and φ1 is true until φ2
holds;

π1

φ1

π2

φ1

π3

φ1

πi−1

φ1

πi

φ2

πi+2
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15Formal Specification
LTL Semantics – Part 3

LTL syntax

φ ::= > | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ, with a ∈ AP .

I π � Fφ iff φfinally holds sometime in the future;
π1 π2 π3 πi−1 πi

φ

πi+2

I π � Gφ iff φ holds globally (now and in every future moment);
π1

φ

π2

φ

π3

φ

πi−1

φ

πi

φ

πi+2

φ
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16The LTL Model Checking problem

Given a Kripke StructureM and an LTL formula φ, we say that

M � φ

iff π � φ, for each behaviour π ofM.

LTL Model Checking
The Model Checking problem amounts to decide whetherM � φ.
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Some examples
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{p, q } �

Figure: The Kripke Structure M
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M
?

� q ∨ Xq
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18The dream of Automatic Verification

Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;

end

end
return x+ y;

Program

Properties

Yes!

Nope!
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Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;
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Program

Properties

Yes!

Nope!

I we know that some properties of programs are undecidable, e.g.
termination! (remember the halting problem?)

I perhaps other interesting properties are decidable?
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19The dream of Automatic Verification
Achievable?

Fully-Automated Deluxe
Program Verifier™

x← 4;
y ← 1;
while x > y do

x← x2 − x · y;
if x%3 = 0 then

x← x\3;
y ← y · 2;

else
y ← x− y;

end

end
return x+ y;

Program

Properties

Yes!

Nope!

I we know that some properties of programs are undecidable, e.g.
termination! (remember the halting problem?)

I perhaps other interesting properties are decidable? Bad news...
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20The foundamental limit
Undecidability

Rice’s theorem [RVG]
Every non-trivial semantic property of programs is undecidable.

I a property is non-trivial if it neither is true for every program nor
it’s false for every program;

I a semantic property is one about the program’s behaviour.

An example
The property of returning 0 for some input is undecidable by Rice’s
Theorem.
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21The foundamental limit
Undecidability

Implicit in Rice’s Theorem is an idealized program model.
I Turing Machines have unbounded memory;
I A variable in Martin Davis’ S programs can be incremented

indefinitely and never overflows;

Concrete computing devices have bounded resources!

The model checking problem is decidable if we restrict ourselves to
finite-state models.
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22Automatic Verification
Model Checkers

Model CheckerFinite State ModelM

Properties (e.g. LTL)

M � Properties

M 2 Properties
+counter-example

Some well-known model checkers are [SPIN], [nuSMV], [TLC], [JPF].
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23The practical limit
State space explosion

I A finite state space can always be generated and explored in
finite time.

I Unfortunately, this does not mean that doing so is always
feasible, as the state space can get very large!

I 1KB of memory (1 000 B) yields 28000 ≈ 102408 states;
I 10 double variables (64 bit each) yield 210×64 ≈ 10192 states;
I optimistic limit for a model checker? 10100 states [Kwo00].
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24Using Formal Methods (FM)

I FM can be used along with traditional development
methodologies.

I During Analysis and Design, FM can:
I be a solid foundation for describing complex systems;
I help with early detection of faults.

I During Development, FM can:
I provide support with synthesis techniques.

I During Verification, FM can:
I increase the confidence on system reliability;
I help with traditional verification techniques (e.g. test case

generation).
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25The Model Checking process

Model + Properties

System + Requirements

Model
Checker

Done

Analysis
Reduce

Model Size
(e.g. abstract)

Refine

modelling

properties satisfied

properties violated
counter-example

Out of memory/time

inconsistency

modelling error
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26A success story
Formal Methods at Amazon Web Services – part 1

I Software Engineers at AWS use Formal Methods [New+14];

I To verify correctness of DynamoDB production code:

I extensive fault-injection testing using a simulated network layer to
control message loss, duplication, and re-ordering;

I stress tests for long periods on real hardware under many different
workloads;

I detailed informal proofs of correctness (found several bugs);
I Formal Methods and Model Checking (using TLC).
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27A success story
Formal Methods at Amazon Web Services – part 2

I In two week, they learned how to use TLA+/TLC and wrote a
detailed specification;

I Model-checked the specification using 10 EC2 instances, each
with 8 cores plus hyperthreads, and 23 GB of RAM;

I Found a data-loss bug if a particular sequence of failures and
recovery steps was interleaved with other processing; the
shortest error trace exhibiting the bug contained 35 high-level
steps.
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28A success story
Formal Methods at Amazon Web Services – part 3

I This success led to management advocating TLA+ to other teams
working on other products;

Product Component Benefits

DynamoDB Replication & group-
membership system

Found 3 bugs.

S3 Fault-tolerant low-level
network algorithm

Found 2 bugs. Found further
bugs in proposed optimizations.

Background redistribu-
tion of data

Found 1 bug, and found a bug in
the first proposed fix.

EBS Volume management Found 3 bugs.

Table: Benefits of using Formal Methods on different products at AWS
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29Model Checking: weaknesses

I Limits: may be undecidable or unfeasible (state space explosion);

I It verifies a model, and not the actual system itself; the results are
only as good as the model.

I Requires expertise in finding adequate abstractions and stating
properties;

I As with any tool, a model checker may contain software defects!
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30Model Checking: strenghts

I Can provide a significant increase in the level of confidence of
system correctness;

I It is a potential “push-button” technology;
I It can be easily integrated in existing development

methodologies;
I It provides useful diagnostic counter-examples in case a property

is violated;
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Practice time!
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31A concurrent program

process P0 {
while(true){
// noncritical section
flag_0 = 1;
while (flag_1) {}
// critical section
flag_0 = 0;
// noncritical section

}
}

process P1 {
while(true){
// noncritical section
flag_1 = 1;
while (flag_0) {}
// critical section
flag_1 = 0;
// noncritical section

}
}
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32A concurrent program
Modelling

process P0 {
while(true){
// noncritical section
flag_0 = 1;
while (flag_1) {}
// critical section
flag_0 = 0;
// noncritical section

}
}

NC0

W0

CR0

flag 0← 1

[!flag 1]

[flag 1]
flag 0← 0

Figure: Model for process P0
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33A concurrent program
Modelling

NC0

W0

CR0

flag 0← 1

[!flag 1]

[flag 1]
flag 0← 0

Figure: Model for process P0

NC1

W1

CR1

flag 1← 1

[!flag 0]

[flag 0]
flag 1← 0

Figure: Model for process P1
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34A concurrent program
Modelling: parallel composition

NC0,NC1

W0,NC1 NC0,W1W0,W1

CR0,CR1
CR0,NC1 NC0,CR1

W0,CR1CR0,W1

flag 0=1 flag 1=1

flag 1=1

[!flag 1]

flag 0=1

[!flag 0]

Figure: Asynchronous parallel composition of P0 and P1



Demo time
Model Checking with Spin/Promela



Take Home Messages
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35Take-home Messages

I Traditional verification techniques (and their limits);

I Formal Methods

I System Specification (Transition Systems, higher-level specification
languages);

I Property Specification (LTL);
I System Verification (Model Checking);

I Using Formal Methods;
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Any questions?
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