
Software Project Management
with
and

Luigi Libero Lucio Starace

luigiliberolucio.starace@unina.it

Maven

June 9, 2021

What is Maven?

Maven is a Project Management and comprehension tool.

It provides ways to manage:

• Builds

• Documentation

• Reporting

• Dependencies

• Releases

• Distribution

June 9, 2021

Build lifecycle

Maven is based on the concept of build lifecycles, i.e., processes for
building and distributing a particular artifact

Three built-in build lifecycles:

• default: handles the deployment of the entire project

• clean: handles project cleaning (remove temporary files)

• site: handles the creation of the project site documentation

A build lifecycle is defined by a sequence of build phases

June 9, 2021

Build phases

validate

compile

test

package

verify

install

deploy

June 9, 2021

• The default lifecycle includes the following phases (and some more!)

• For more details on the phases in the built-in lifecycles: Reference

• You can also run only some of the phases

• E.g., if you run the command mvn package only the validate,
compile, test and package phases will be executed.

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

Plugin Goals

• A build phase is responsible for a specific
step in the build lifecycle, but different
project may implement a phase
differently. This is done by binding plugin
goals to the lifecycle phase.

• A build phase consists of zero or more
plugin goals

June 9, 2021

Lifecycle

Phases

Plugin
Goals

The Project Object Model (POM)

• A POM is the fundamental unit of work in Maven.

• It’s an XML file information about the project and configuration
details

• A minimal POM is as simple as the one below

June 9, 2021

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>it.unina.spme</groupId>
<artifactId>project</artifactId>
<version>1.0.0</version>

</project>
<!-- the fully qualified name for the artifact is it.unina.spme:project:1.0.0 -->

The Project Object Model (POM)

June 9, 2021

POM

POM Relationships

Coordinates
groupId
artifactId
version

Inheritance
parent POM

Dependencies

Project Information

Name

Description

Contributors

Licences

Build

Plugins

Resources

Directories

Reporting

Plugins

Environment Settings

Issue Tracking

Prerequisites

Repositories

PluginRepositories

Managing dependencies

June 9, 2021

<!– in the pom.xml file -->
<dependencies>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>30.1.1-jre</version>

</dependency>

<dependency>
<groupId>org.hamcrest</groupId>
<artifactId>hamcrest</artifactId>
<version>2.2</version>
<scope>test</scope> <!– dependency scope reference -->

</dependency>
<!– ... -->

</dependencies>

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

The Maven help plugin

• Used to get information about a project or the system

• Useful to understand what’s going on

• Include 7 goals, including help:describe

• For example, to list the goals in a given phase, one can issue:

June 9, 2021

>> mvn help:describe -Dcmd=<phaseName>

>> mvn help:describe -Dcmd=test

[INFO] 'test' is a phase corresponding to this plugin:
org.apache.maven.plugins:maven-surefire-plugin:2.12.4:test

https://maven.apache.org/plugins/maven-help-plugin/index.html
https://maven.apache.org/plugins/maven-help-plugin/describe-mojo.html

Built-in plugin goals

• Some default plugin goals are bounded to the built-in phases

• E.g.: the maven-compiler-plugin goals compile and testCompile are
bound, respectively, to the compile and test-compile phases of the
default lifecycle.

• To see more details on Maven does by default one can use the
help:describe of the help:effective-pom

• A nice alternative is the buildplan-maven-plugin

June 9, 2021

https://maven.apache.org/plugins/maven-compiler-plugin/index.html
https://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.html
https://maven.apache.org/plugins/maven-compiler-plugin/testCompile-mojo.html
https://maven.apache.org/plugins/maven-help-plugin/describe-mojo.html
https://maven.apache.org/plugins/maven-help-plugin/effective-pom-mojo.html
https://github.com/jcgay/buildplan-maven-plugin

Using the Maven help plugin

June 9, 2021

>> mvn help:describe -Dcmd=test
[...]
It is a part of the lifecycle for the POM packaging 'jar'. This lifecycle includes the
following phases:
* validate: Not defined
* initialize: Not defined
* generate-sources: Not defined
* process-sources: Not defined
* generate-resources: Not defined
* process-resources: org.apache.maven.plugins:maven-resources-plugin:2.6:resources
* compile: org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
* process-classes: Not defined
* generate-test-sources: Not defined
* process-test-sources: Not defined
* generate-test-resources: Not defined
* process-test-resources: org.apache.maven.plugins:maven-resources-plugin:2.6:testResources
* test-compile: org.apache.maven.plugins:maven-compiler-plugin:3.1:testCompile
[...]

Using the buildplan-maven-plugin

To list all the plugin execution within a project:

June 9, 2021

>> mvn fr.jcgay.maven.plugins:buildplan-maven-plugin:list
[INFO] Build Plan for Project:

PLUGIN | PHASE | ID | GOAL

maven-clean-plugin | clean | default-clean | clean
maven-resources-plugin | process-resources | default-resources | resources
maven-compiler-plugin | compile | default-compile | compile
maven-resources-plugin | process-test-resources | default-testResources | testResources
maven-compiler-plugin | test-compile | default-testCompile | testCompile
maven-surefire-plugin | test | default-test | test
maven-jar-plugin | package | default-jar | jar
maven-install-plugin | install | default-install | install
maven-deploy-plugin | deploy | default-deploy | deploy

Our running example

• Let’s consider a very simple project

June 9, 2021

project
├── src/main/java
│ └── it.unina.spme.project
│ └── Utilities.java
│ ├── mean(Set<Integer>) : double
│ └── numberOfSubsets(Set) : int
├── src/test/java
│ └── it.unina.spme.project
│ └── UtilitiesTest.java
│ ├── meanShouldThrowExceptionOnEmptySet() : void
│ ├── meanShouldWorkWithSets() : void
│ ├── meanShouldWorkWithSingletons(int) : void
│ └── other tests ...
└── pom.xml

Running tests with Maven

June 9, 2021

When we run our default lifecycle up to the test phase, out of the box
we get:
>> mvn test
[INFO] Scanning for projects...
[INFO]
[INFO] -----------------------< it.unina.spme:project >------------------------
[INFO] Building Project 1.0.0
[INFO] --------------------------------[jar]---------------------------------
[....]

T E S T S

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

Running tests with Maven

• Let’s start by adding the maven-surefire-plugin

• Defines only one goal: surefire:test, which binds by default to the
test phase

June 9, 2021

<build>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.0</version>

</plugin>
</plugin>

</build>

https://maven.apache.org/surefire/maven-surefire-plugin/index.html
https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html

Running tests with Maven

June 9, 2021

>> mvn test
[INFO] Scanning for projects...
[INFO]
[INFO] -----------------------< it.unina.spme:project >------------------------
[INFO] Building Project 1.0.0
[INFO] --------------------------------[jar]---------------------------------
[....]
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running it.unina.spme.project.UtilitiesTest
[INFO] Tests run: 12, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.091 s - in
it.unina.spme.project.UtilitiesTest
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 12, Failures: 0, Errors: 0, Skipped: 0
[....]

Reporting

June 9, 2021

When dealing with large software projects,
reporting tools are essentials

• to monitor code quality (metrics)

• to ensure everything is properly tested
(coverage/mutation score)

Reporting tools that can be integrated in Maven
include Clover, SonarQube, JaCoCo (computes
only coverage)

https://openclover.org/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-maven/
https://www.eclemma.org/jacoco/trunk/doc/maven.html

Statistics and Coverage Reports with Clover

June 9, 2021

• Documentation, quick start, basic usage on the website.

<plugin> <!–- main part, note that this snippet alone is not enough! See docs! -->
<groupId>org.openclover</groupId>
<artifactId>clover-maven-plugin</artifactId>
<version>4.4.1</version>
<executions>
<execution>

<id>clover-instrumentation</id>
<phase>generate-sources</phase>
<goals>
<goal>instrument</goal>

</goals>
</execution>

</executions>
</plugin>

https://openclover.org/doc/manual/latest/maven--user-guide.html
https://openclover.org/doc/manual/latest/maven--quick-start-guide.html
https://openclover.org/doc/manual/4.2.0/maven--basic-usage.html
https://openclover.org/index

Using Clover

One can run >> mvn clean test site to generate the report

• clean is necessary to clean Clover’s temp. files

• test so we run our default lifecycle up to the test phase

• site is used to generate an html report

June 9, 2021

The Clover report

June 9, 2021

• Available in /target/site/clover/index.html

• Includes very detailed (test-method level) coverage reports and
metrics

Failing a build based on a coverage target

June 9, 2021

<plugin>
<groupId>org.openclover</groupId>
<artifactId>clover-maven-plugin</artifactId>
<version>4.4.1</version>
<configuration>
<generateXml>true</generateXml>
<!–- define target coverage percentage -->
<targetPercentage>50%</targetPercentage>

</configuration>
<executions>
<!–- first execution, instrumentation -->
<execution>
<id>clover-instrumentation</id>
<phase>generate-sources</phase>
<goals>

<goal>instrument</goal>
</goals>

</execution>

<!–- then we bind the check goal -->
<execution>
<id>clover-check-coverage</id>
<phase>verify</phase>
<goals>
<goal>check</goal>

</goals>
</execution>

</executions>
</plugin>

Failing a build based on a coverage target

June 9, 2021

• Run up to the verify phase, to which we bounded the clover:check
goal

>> mvn verify
[INFO]
[INFO] -----------------------< it.unina.spme:project >------------------------
[INFO] Building Project 1.0.0
[INFO] --------------------------------[jar]---------------------------------
[....]
[INFO] Coverage check FAILED
[ERROR] Total coverage of 41,2% did not meet target of 50%
[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 6.589 s
[INFO] Finished at: 2021-06-07T18:52:51+02:00
[INFO] --

git

June 9, 2021

Version Control Systems (VCS)

Tools to record changes to a set of files over time, so you can:

• Revert files back to a previous state

• Revert the entire project back to a previous state

• Compare changes over time

June 9, 2021

Local version control

• Copy files in (hopefully timestamped!)
directories
• Error prone!

• Use tools like RCS

• Difficult to collaborate with other people!

June 9, 2021

https://git-scm.com/book/

https://www.gnu.org/software/rcs/
https://git-scm.com/book/

Centralized version control

June 9, 2021

https://git-scm.com/book/

• A centralized server contains all the
files

• A number of clients check out files

• They modify their local copies, then
“check in” their changes back to the
server

• Tools like Subversion, CVS

• Server is a single point of failure

https://git-scm.com/book/
https://subversion.apache.org/
https://www.nongnu.org/cvs/

Distributed version control

June 9, 2021

https://git-scm.com/book/

• Local repository are a complete copy of
everything on the remote server

• A number of clients “clone” and “pull”
changes from the remote repository

• They modify their local copies, then
“push” their changes to the remote
server for synchronization with others

• Tools like git, Mercurial

https://git-scm.com/book/
https://git-scm.com/
https://www.mercurial-scm.org/

git

• Official website

• Created by Linus Torvalds in 2005

• Fast, fully distributed, non-linear

• Very popular

• A «git» is a cranky old man
(Linus meant himself!)

June 9, 2021

https://xkcd.com/1597/

https://git-scm.com/
https://xkcd.com/1597/

git internals: basics

• git object storage is a DAG of objects,
identified by its SHA-1 hash

• A blob is the simplest object, a bunch of
bytes corresponding to a file

• A tree is an object representing
directories

• A commit refers to a tree representing
the state of the files at the time of the
commit, and to 0..n parent commits

• Nice introduction to Git internals

June 9, 2021

https://web.archive.org/web/20210508030455/https:/eagain.net/articles/git-for-computer-scientists/

git internals: example

June 9, 2021

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

• In first commit, only test.txt

• In second commit, new.txt
is added and test.txt is
updated

• In third commit, a new
directory bak is added,
containing the original
test.txt file

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

git internals: refs

• References, or heads or branches, are
pointers a node in the DAG.

• Unlike DAG nodes that cannot be
changed, these pointers can be moved
around freely.

• The HEAD ref is a pointer to the currently
active branch.

More on git internals: here

June 9, 2021

https://web.archive.org/web/20210508030455/https:/eagain.net/articles/git-for-computer-scientists/

Tracking changes with git

• Lifecycle of your files under git

• >> git status prints information about each file

June 9, 2021

git add

git add

git commit

Using git status

June 9, 2021

>> git status
On branch main
Your branch is ahead of 'origin/main' by 3 commits. (use "git push" to publish
your local commits)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: README.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: bar.txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

foo.txt

Undoing changes

>> git commit --amend is useful to redo the last commit

>> git checkout is moved the HEAD label to a given commit/branch

June 9, 2021

>> git checkout b

https://www.atlassian.com/git/tutorials/undoing-changes/git-reset

https://www.atlassian.com/git/tutorials/undoing-changes/git-reset

Undoing changes

>> git commit --amend is useful to redo the last commit

>> git reset moves both HEAD and current branch ref

June 9, 2021

>> git reset b

https://www.atlassian.com/git/tutorials/undoing-changes/git-reset

https://www.atlassian.com/git/tutorials/undoing-changes/git-reset

git remotes

• Remote repositories are used to
collaborate with others

• They are versions of your project
hosted somewhere else

• Collaborating means to push/pull
data from remotes when you
need to share work

• There can up to many remotes

June 9, 2021

https://blog.netsons.com/git-software-guida-facile/

https://blog.netsons.com/git-software-guida-facile/

Listing and adding remotes

June 9, 2021

>> git remote
origin

>> git remote -v
origin https://github.com/luistar/git-demo-spme.git (fetch)
origin https://github.com/luistar/git-demo-spme.git (push)

>> git remote add myremote https://github.com/coworker/repo

>> git remote -v
origin https://github.com/luistar/git-demo-spme.git (fetch)
origin https://github.com/luistar/git-demo-spme.git (push)
myremote https://github.com/coworker/repo (fetch)
myremote https://github.com/coworker/repo (push)

Syncing with remotes

June 9, 2021

• git push is used to upload
local repository content to a
remote

• git fetch is used to download
data from the given remote

• git pull is used to download
data from the given remote,
and immediately update the
local repository to match that
content

workspace staging
Local

repository
remote

git add

git commit

git push

git fetch

git pull

git branching

• In a collaborative environment, many
developers work on the same source code

• Some fix bugs, others add new features

• If they all worked on the main branch, they
might conflict often with eachother

• With CI/CD, the main branch should be
always buildable

• Branches allow developers to isolate their
work

June 9, 2021

Creating a new branch

• A branch is basically a pointer to a commit

• git branch lists all the branches

• git branch <name> creates a new <name>
branch

• git checkout or git switch can be used to
switch (i.e., move HEAD) to a different
branch

June 9, 2021

>> git branch
* main

>> git branch feature

>> git branch
feature

* main

>> git checkout feature
Switched to branch 'feature’

>> git branch
* feature
main

Integrating branched history: git merge

• git merge allows us to put forked history back together again

June 9, 2021

feature

Main (HEAD)

feature

main

New merge
commit

Main (HEAD)

>> git merge feature

Integrating branched history: git merge

• git merge allows us to put forked history back together again

• A new merge commit is added, having as parents the commits
referenced by the merged branches

• Conflicts might arise (read more here)

June 9, 2021

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

Integrating branched history: git rebase

• git rebase solves the same problem as git merge.

June 9, 2021

feature

main

Integrating branched history: git rebase

• git rebase solves the same problem as git merge.

• The target branch is copied «on top» of the current one

• No new merge commit is created (cleaner history)

• More on merge vs rebase here

June 9, 2021

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

