
An Introduction to

Mutation Testing and
Metamorphic Testing

Luigi Libero Lucio Starace

luigiliberolucio.starace@unina.it

June 4, 2021 Advanced Topics in Software Testing 1

Mutation Testing
What if I told you that you can start killing mutants to test your tests?

June 4, 2021 Advanced Topics in Software Testing 2

Testing your tests

How do you know if your test suite is effective or not?

• I wrote clean tests that run in isolation with Hamcrest and Mockito!
• That’s great, but it doesn’t tell much on the effectiveness of the test suite

• I practiced TDD, so everything is tested!
• Are you really really really really really sure of their effectiveness?

• My tests cover 100% of the branches!
• Not very indicative. Coverage is good at telling us which parts are never

covered, but tells very little on how well the covered parts are tested!

June 4, 2021 Advanced Topics in Software Testing 3

What is Mutation Testing?

• Mutation Testing is a technique
to evaluate the effectiveness of
test suites.

• Let’s start with some terminology

June 4, 2021 Advanced Topics in Software Testing 4

A Chitten, art from gyyporama.com

https://www.gyyporama.com/#/chitten/

Software Mutations

A software mutation is a small change in your codebase

June 4, 2021 Advanced Topics in Software Testing 5

public Boolean deposit(double amount) {
if(amount > 0) {
balance = balance + amount;
return true;

}
else {

return false;
}

}

public Boolean deposit(double amount) {
if(amount < 0) {

balance = balance - amount;
return true;

}
else {

return null;
}

}

Software Mutants

• Don’t have super powers or
adamantium bones (luckily!)

• They’re just versions of your
software containing one or more
mutations

June 4, 2021 Advanced Topics in Software Testing 6

Mutation Testing

• You have your software, and a nice and shiny test suite

• Generate (automatically) a lot of mutants for your codebase

• Run (a selection of) your tests on each mutant

• See what happens:
• If one of the test fails, we say that the mutant is killed by the test suite

• If all the tests pass, the mutant escapes

• Timeout (mutant introduced an infinite loop!)

• A good test suite is one that kills a lot of mutants!

June 4, 2021 Advanced Topics in Software Testing 7

Not all mutants are bad

• An escaped mutant is not necessarily a bad thing

• Some mutants might be equivalent to the original

• Some might even happen to fix bugs in your
code!

June 4, 2021 Advanced Topics in Software Testing 8

public boolean isSumZero(int[] array) {
int sum = 0;
for(int i : array)

sum = sum + i;
return sum == 0;

}

public boolean isSumZero(int[] array) {
int sum = 0;
for(int i : array)

sum = sum - i;
return sum == 0;

}

Equivalent mutant

Challenges

CPU intensive and time consuming (can be parallelized)

• Suppose your codebase has 100 classes and 1000 tests

• Suppose a test runs, on average, in 0.1 seconds

• Suppose that you generate 10 mutants for each class.

• If we ran the entire test suite on each mutant, it would take

Test selection/prioritization techniques come in handy!

June 4, 2021 Advanced Topics in Software Testing 9

100 ⋅ 10 ⋅ 1000 ⋅ 0.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 100 000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ≈ 28 ℎ𝑜𝑢𝑟𝑠

Mutation Testing in practice

• Infection (PHP) https://infection.github.io/

• Cosmic Ray (Python) https://github.com/sixty-north/cosmic-ray

• Stryker (JS, C#, Scala) https://stryker-mutator.io/

• PIT (Java) https://pitest.org/

June 4, 2021 Advanced Topics in Software Testing 10

https://infection.github.io/
https://github.com/sixty-north/cosmic-ray
https://stryker-mutator.io/
https://pitest.org/

PITest

• State-of-the-art Java mutation testing system

• Insert mutations through bytecode
manipulation

• Several optimization heuristics
• Only runs tests covering the mutated lines

• Interrupts tests taking too long

• Large set of built-in mutators

• Easy integration with build tools/IDEs/CI-CD

• Detailed and human-readable reports

June 4, 2021 Advanced Topics in Software Testing 11

https://pitest.org/quickstart/mutators/

PIT demo
Let’s kill some mutants

June 4, 2021 Advanced Topics in Software Testing 12

Our codebase

June 4, 2021 Advanced Topics in Software Testing 13

public class SavingsAccount {
private double balance;

public SavingsAccount() { this.balance = 0; }

public boolean deposit(double amount) {
if(amount > 0) {

this.balance = this.balance + amount;
return true;

}
else {

return false;
}

}
/* ... */

}

Our codebase

June 4, 2021 Advanced Topics in Software Testing 14

@Test
@DisplayName("Should correctly deposit a positive amount")
void shouldDepositCorrectly() {

SavingsAccount s = new SavingsAccount();
boolean ret = s.deposit(42.0);
assertThat(ret,is(true));
assertThat(s.getBalance(),is(closeTo(42.0,0.001)));

}

@Test
@DisplayName("Should not deposit negative amounts")
void shouldNotDepositNegativeAmounts() {

SavingsAccount s = new SavingsAccount();
boolean ret = s.deposit(-42.0);
assertThat(ret,is(false));
assertThat(s.getBalance(),is(closeTo(0.0,0.001)));

}

What about that test suite?

• Both the tests pass

• They get us to 100% statement (and branch!) coverage

Is the test suite really effective, though?

June 4, 2021 Advanced Topics in Software Testing 15

Let’s try mutation testing with PIT

Configure Maven to use the PIT plugin

Let’s run PIT!

June 4, 2021 Advanced Topics in Software Testing 16

<plugin> <!– pom.xml file -->
<groupId>org.pitest</groupId>
<artifactId>pitest-maven</artifactId>
<version>1.4.3</version>
<!– dependencies, executions... -->
<configuration>

<targetClasses>
<param>mutation.*</param><!–-mutate all classes in the mutation package-->

</targetClasses>
<targetTests>
<param>mutation.*</param><!–-consider only tests in the same package-->

</targetTests>
</configuration>

</plugin>

Let’s try mutation testing with PIT

PIT execution

June 4, 2021 Advanced Topics in Software Testing 17

==
- Timings
==
> scan classpath : < 1 second
> coverage and dependency analysis : < 1 second
> build mutation tests : < 1 second
> run mutation analysis : < 1 second
--
> Total : 1 seconds
==
- Statistics
==
>> Generated 13 mutations Killed 10 (77%)
>> Ran 21 tests (1.62 tests per mutation)

Let’s try mutation testing with PIT

• PIT produces also a detailed,
human-readable HTML
report

• The report allows us to see
which mutants were
generated and which ones
escaped

June 4, 2021 Advanced Topics in Software Testing 18

Reading PIT reports

• The blue numbers indicate how
many mutants were generated by
modifying the corresponding line
(e.g.: 2 mutants for line 14)

• Red lines are those for which at
least one of the corresponding
mutants escaped

• Every mutant for the green lines
was killed

June 4, 2021 Advanced Topics in Software Testing 19

Reading PIT reports

• PIT also tells us which mutation operators were applied on each line

June 4, 2021 Advanced Topics in Software Testing 20

(i.e.: changed > with >=)
(i.e.: changed > with <=)

The mutant escaped because we
did not properly test boundary
values. What happens when we
try to withdraw zero money?

Metamorphic Testing
Solving the oracle problem, one metamorphosis at a time

June 4, 2021 Advanced Topics in Software Testing 21

Test oracles

• A test oracle is a mechanism to decide whether a test output is
correct

June 4, 2021 Advanced Topics in Software Testing 22

Input
System Under

Test (SUT)
Output

Test Oracle

Fail

Pass

The oracle problem

• Sometimes it’s not feasible to get an automated test oracle

• This is an issue especially when trying to automatically generate tests

June 4, 2021 Advanced Topics in Software Testing 23

Metamorphic Testing by example (Maps)

• Suppose you’re an automated testing tool

• Your task is to test the Google Maps app

• You start with a first query…

• Is the result correct?

• Hard to tell for an automatic tool!

June 4, 2021 Advanced Topics in Software Testing 24

Metamorphic Testing by example (Maps)

• You can try a slightly different query

• The starting point is moved 10 meters
west this time

• It is reasonable to expect the proposed
path to be roughly the same

• Otherwise, it is likely that there’s a bug
in the system!

June 4, 2021 Advanced Topics in Software Testing 25

Metamorphic Testing by example (Search)

• Suppose you’re testing a search engine-like application

• You get 39 results matching your initial query

June 4, 2021 Advanced Topics in Software Testing 26

Metamorphic Testing by example (Search)

• If you restrict your search (e.g.: consider only 5 star structures)

• You expect to get a subset of the initial set of hotels!

June 4, 2021 Advanced Topics in Software Testing 27

The intuition behind Metamorphic Testing

• Sometimes, we do not know whether the output of any individual
input is correct

• But, we may know the relation between some inputs and their
outputs!

June 4, 2021 Advanced Topics in Software Testing 28

System
Under

Test

x

g(x) f(g(x))

f(x)

Metamorphic Testing

• Identify some meaningful properties of the problem (the so-called
metamorphic relations)

• Define a source (initial) test case

• Generate follow-up test cases by using the metamorphic relations to
transform the source input and validate the output.

June 4, 2021 Advanced Topics in Software Testing 29

System
Under

Test

x

g(x) f(g(x))

f(x)
The outputs act
as pseudo-oracles
for each other

Transformed
leveraging the
metamorphic
relation

Successful applications

Metamorphic testing has been applied with promising results in many
different scenarios (in addition to the one we already talked about!):

• Compilers and Graphic Drivers

• Cybersecurity (e.g. code obfuscators)

• Bioinformatics and numerical programs

• Machine Learning applications

• Autonomous driving

• … and many more!

June 4, 2021 Advanced Topics in Software Testing 30

Metamorphic Testing and AI

June 4, 2021 Advanced Topics in Software Testing 31

From Deng, Y., Zheng, X., Zhang, T., Lou, G., & Kim, M. (2020). RMT: Rule-based Metamorphic Testing for Autonomous Driving Models. arXiv.

Challenges & Open Issues

• No systematic guidelines to design
metamorphic relations (yet!)

June 4, 2021 Advanced Topics in Software Testing 32

Challenges & Open Issues

• No systematic guidelines to design
metamorphic relations (yet!)

• Automating the generation of likely
metamorphic relations

June 4, 2021 Advanced Topics in Software Testing 33

Challenges & Open Issues

• No systematic guidelines to design
metamorphic relations (yet!)

• Automating the generation of likely
metamorphic relations

• Investigating application to non-functional
testing

June 4, 2021 Advanced Topics in Software Testing 34

Challenges & Open Issues

• No systematic guidelines to design
metamorphic relations (yet!)

• Automating the generation of likely
metamorphic relations

• Investigating application to non-functional
testing

• No mainstream tools to support the use of
the technique (yet!)

June 4, 2021 Advanced Topics in Software Testing 35

References

June 4, 2021 Advanced Topics in Software Testing 36

References (Mutation Testing)

1. Jia, Y., & Harman, M. (2010). An analysis and survey of the development of mutation testing.
IEEE transactions on software engineering, 37(5), 649-678.

2. Coles, H., Laurent, T., Henard, C., Papadakis, M., & Ventresque, A. (2016, July). Pit: a practical
mutation testing tool for java. In Proceedings of the 25th international symposium on software
testing and analysis (pp. 449-452).

3. Petrovic, G., Ivankovic, M., Kurtz, B., Ammann, P., & Just, R. (2018, April). An industrial
application of mutation testing: Lessons, challenges, and research directions. In 2018 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW)
(pp. 47-53). IEEE.

4. Usaola, M. P., & Mateo, P. R. (2010). Mutation testing cost reduction techniques: A survey. IEEE
software, 27(3), 80-86.

June 4, 2021 Advanced Topics in Software Testing 37

References (Metamorphic Testing)

1. Chen, T. Y., Kuo, F. C., Liu, H., Poon, P. L., Towey, D., Tse, T. H., & Zhou, Z. Q. (2018).
Metamorphic testing: A review of challenges and opportunities. ACM Computing
Surveys (CSUR), 51(1), 1-27.

2. Brown, J., Zhou, Z. Q., & Chow, Y. W. (2019). Metamorphic Testing of Mapping
Software. In Towards Integrated Web, Mobile, and IoT Technology (pp. 1-20). Springer,
Cham.

3. Chan, W. K., Cheung, S. C., & Leung, K. R. (2007). A metamorphic testing approach for
online testing of service-oriented software applications. International Journal of Web
Services Research (IJWSR), 4(2), 61-81.

4. Segura, S., Towey, D., Zhou, Z. Q., & Chen, T. Y. (2018). Metamorphic testing: Testing
the untestable. IEEE Software, 37(3), 46-53.

5. Zhang, M., Zhang, Y., Zhang, L., Liu, C., & Khurshid, S. (2018, September). DeepRoad:
GAN-based metamorphic testing and input validation framework for autonomous
driving systems. In 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 132-142). IEEE.

June 4, 2021 Advanced Topics in Software Testing 38

