
Getting to know the
Amazing Amazon Web Services

Luigi Libero Lucio Starace
luigi.starace@gmail.com

June 4, 2018

University of Naples, Federico II

1/187

Outline

1 A little bit of context

2 An AWS bestiarium

3 Serverless architectures

4 Demo: a serverless web application

5 Take Home Messages

2/187

mailto:luigi.starace@gmail.com

A little bit of context

Cloud Computing

Cloud computing is the on-demand delivery of computing
resources through a cloud services platform via the inter-
net with pay-as-you-go pricing.

3/187

Cloud Computing: Service Models

Software as a Service (SaaS)
The service vendor provides the user with a completed
product that is run and managed by the service provider.
Platform as a Service (PaaS)
The service vendor provides the user with a set of API
which can be used to build, test and deploy applications.
Infrastructure as a Service (IaaS)
The service vendor provides users access to computing
resources such as servers, storage and networking.

4/187

Service Models: a visual comparison

On-premise

Networking

Servers

Virtualization

OS

Middleware

Application

IaaS

Networking

Servers

Virtualization

OS

Middleware

Application

PaaS

Networking

Servers

Virtualization

OS

Middleware

Application

SaaS

Networking

Servers

Virtualization

OS

Middleware

Application

User manages Other manages

Figure 1: A service models comparison

5/187

Some stats

Worldwide Public Cloud Services Revenue Forecast (Billions of
U.S. Dollars) [Gar17]

2016 2017 2018 2019 2020

219,6 260,6 305,8 355,6 411,4

2016 2017 2018 2019 2020

300

400

Year

Bi
lli
on
s
of
U.
S.
$ revenue

6/187

The bigwigs

Google
IBM
Microsoft
Alibaba
Oracle
Amazon

7/187

Market Share

Oth
ers

Alib
aba Goo

gle IBM
Mic
roso

ft
Ama

zon
0

10

20

30

Provider

%
of
m
ar
ke
ts
ha
re

Figure 2: Market share in Q4 2017 (IaaS, PaaS, Hosted Private Cloud)
[Syn18]

8/187

An AWS bestiarium

Amazon Web Services

Amazon Web Services is a collection of cloud-based services.
A very big one.

9/187

An AWS bestiarium

Database services

Relational Database Service (RDS)

Set up, operate a relational database
in the cloud.
Takes care of backups, patching.
Supports:

MySQL, PostgreSQL, MariaDB
Oracle, MS SQL Server
Amazon Aurora

Amazon RDS

10/187

Non Relational Database Services

DynamoDB
Fast and flexible NoSQL database
service for any scale.

ElastiCache
In memory data store.
Supports memcached, Redis

Neptune
Graph database service
Supports RDF, SPARQL, ...

Amazon DynamoDBAmazon ElastiCache

11/187

An AWS bestiarium

Cloud storage

Cloud storage products

Elastic Block Storage (EBS)
Persistent local storage for EC2
instances.

Elastic File System (EFS)
File system interface to share data
between EC2 instances.

Simple Storage Service (S3)
Glacier

Durable and cheap long-term storage.

12/187

Amazon Simple Storage Service (S3)

store and retrieve any amount of data
from anywhere
99.999999999% durability (nine nines!)
Data is distributed across a minimum
of three availability zones
A logical unit of storage is a bucket
Multiple storage classes

Standard
Infrequent Access
One zone-Infrequent Access
Amazon Glacier

13/187

Amazon Simple Storage Service (S3) - more

Multiple storage classes

Storage class Storage Retrieval (per 1K req.)

Standard $0.022 per GB $0.0004
Infrequent access $0.0125 per GB $0.001
IA single zone $0.01 per GB $0.001

Table 1: S3 pricing (Ireland)

14/187

Amazon Simple Storage Service (S3) - more

Well-integrated with other services
Machine Learning
Big Data Analysis

REST API
Can be used to host static websites

15/187

An AWS bestiarium

Developer Tools

Developer Tools

CodeCommit
Managed, scalable, private git server
Pricing based on active users (5 free,
1$ for each additional user)

CodeBuild
Managed, scalable build server
Pay-per-minute spent building your
code

16/187

Developer Tools - more

CodeDeploy
Automates deployment to computing
services (also to instances running
on-premise)
Tries to avoid downtime
0.02$ per-on-premise deployment

CodePipeline
Continuous integration e continuous
delivery
Define your own workflow and stages
1$ per-month per active pipeline

17/187

CodePipeline
28/4/2018 pipeline.xml

1/1

Production
Stage

Pre-production
Stage

Testing StageBuilding Stage

CodePipeline

Developers

CodeCommit

Commit

CodeBuild JUnit CodeDeploy CodeDeploy

Manual
Authorization

18/187

CodePipeline - more

Interested in CI/CD on AWS? Check these out:

Practicing Continuous Integration and Continuous
Delivery on AWS (whitepaper) [Ama17]
Set up a Continuous Deployment Pipeline using AWS
CodePipeline [Amab]
Tutorial: Create a Four-Stage Pipeline [Amac]

19/187

Developer Tools - more

CodeStar
Wrapper around developer tools to
simplify setup
Templates
Team Management
Central Project Dashboard
Free of charge

Cloud9
Cloud-based full-fledged IDE
Runs in a web browser
Collaborative editing and chat
Greatly-integrated with AWS
Free of charge

20/187

An AWS bestiarium

Machine Learning

Machine Learning: platform services

Amazon SageMaker
Preconfigured for Tensorflow, MXNet...
Build, Train and Deploy phases
Pay based on build time, train time
and hosting time

21/187

Machine Learning: application services

Comprehend (for NLP) Dashboard

Rekognition (Visual Analysis) Dashboard

Translate
Polly (text-to-speech)
Transcribe (speech-to-text)

22/187

https://eu-west-1.console.aws.amazon.com/comprehend/home?region=eu-west-1
https://eu-west-1.console.aws.amazon.com/rekognition/home?region=eu-west-1

An AWS bestiarium

Miscellanea

Miscellanea

Cognito
Sign-up and authentication
Federated identities

CloudFront
Content Delivery Network
116 Points of Presence in 56 cities
across 24 countries

Mechanical Turk

23/187

Amazon MechanicalTurk

???

24/187

The Turk

The Turk was a chess-playing automaton built in 1770.
Obviously it was a fraud.

25/187

Amazon MechanicalTurk

???
Human Intelligence through an API
Create HIT (Human Intelligence Task)
Elastic, on-demand workforce
Available 24/7

26/187

An AWS bestiarium

Computing

Amazon Elastic Compute Cloud (EC2)

(Virtual) Servers on demand
Different types of instances to suit
computing needs
Per-second (or per-hour) billing
Data transfer not included!
Persistent storage not included!

 EBS/EFS

Scaling not included!

Azure: Virtual Machines web

Google Cloud: Compute Engine web

27/187

Amazon Elastic Compute Cloud (EC2) Notes

• Need more space? Amazon Elastic Block Storage provides
persistent block storage volumes for use with Amazon EC2
instances in the AWS Cloud

https://azure.microsoft.com/en-gb/services/virtual-machines/
https://cloud.google.com/compute/

Amazon EC2 Auto Scaling

Scaling is the ability to increase or
decrease the compute capacity of your
application
Scale your application manually, on a
scheduled basis or on demand

Azure: Virutal Machine Scale Sets web

Google Cloud: Load Balancing web

28/187

Amazon EC2 Auto Scaling: details

Auto scaling group

EC2EC2EC2 EC2 EC2

minimum size scale as needed

desired capacity

maximum size

29/187

https://azure.microsoft.com/en-gb/services/virtual-machine-scale-sets/
https://cloud.google.com/load-balancing/

Amazon Elastic Load Balancing (ELB)

Distributes incoming traffic across
multiple EC2 instances
Pay-per-use billing

Execution time
Number of requests / traffic

Balancing

Azure: Load Balancer web

30/187

Amazon Elastic Load Balancing (ELB)

EC2 Instances

ELB

unhealthy instance

31/187

https://azure.microsoft.com/en-gb/services/load-balancer/

Amazon Lightsail

A lightweight, simplified offer
Bundles computing, storage, and
networking capacity
Preconfigured instances for

Debian, Windows Server, ...
Wordpress, Magento, Redmine, ...
LAMP stack, Nginx, ...

Low and predictable monthly costs

Websites: EC2 Lightsail

32/187

Amazon Lightsail Notes

• Stress out how it is simplified

• Show the websites: EC2 Lightsail

• Point out how it’s not immediate to predict monthly cost for
EC2 + Storage (Elastic Block Store) + Autoscaling + ELB

https://aws.amazon.com/ec2/
https://aws.amazon.com/lightsail/
https://aws.amazon.com/ec2/
https://aws.amazon.com/lightsail/

Amazon Elastic Beanstalk

“Easy to begin, impossible to outgrow”
Easy-to-use service to deploy web
apps
Supports Apache, Nginx, IIS and more
Supports Java, .NET, PHP, Node.js,
Python, Ruby, Go, and Docker
Manages auto-scaling, load balancing,
health monitoring
Customizable
Free of charge. Pay only for the AWS
resources you use.

Beanstalk

33/187

A little recap

So far we’ve seen:

Elastic Compute Cloud (EC2)
Auto-scaling, Elastic Load Balancing

Lightsail
Elastic Beanstalk

We have to (somewhat) care about the infrastructure!

34/187

Deploying a Web Application with Amazon Elastic Beanstalk

It’s demo time!

35/187

What we’re going to do in this demo

Checkout a very simple web application written in PHP
Run it locally (optional)
Deploy it to the cloud using Amazon Elastic Beanstalk
Doable in 30 minutes at home.

36/187

About the web app

We’ll deploy a very simple website for this very talk. The web
app has two pages:

a substantially static homepage
a comment page allowing users to leave feedbacks.

Technologies involved:

Symfony framework
Doctrine ORM
Webpack, Sass

37/187

Architecture
28/4/2018 serverful_2.xml

1/1

RDS MySQLClients

AutoScaling Group

EC2

EC2

EC2

. . .

Load Balancer

 Skip tutorial

38/187

What you’ll need

An AWS account (a free one will suffice)
git version control (recommended)
If you want to build and run the app locally:

An AMP (Apache, PHP ≥ 7.1.3, MySQL ≥ 5.7) stack
Composer package manager
Node.js

39/187

Step 1: get the app

Clone the git repository Github

D:\Desktop> git clone https://github.com/luistar/
serverful-webapp.git serverful-webapp

40/187

https://github.com/luistar/serverful-webapp

Step 2: install dependencies

Install dependencies with composer
D:\Desktop> cd serverful-webapp

D:\Desktop\serverful-webapp> composer install

Then install Node.js dependecies
D:\Desktop\serverful-webapp> npm install

41/187

Step 3: Configuration parameters

Start your database instance and create an user for the
webapp. Once you are done, update the configuration file
config/packages/database-config.php accordingly.

2 //get parameter from environment or fallback to defaults
3 $db_host = (
4 (isset($_SERVER['RDS_HOST'])) ?
5 ($_SERVER['RDS_HOST']) : ('localhost')
6);
7 /* And following lines */

In config/services.yaml replace the dummy text with
your Google Maps API Key.

1 parameters:
2 locale: 'en'
3 app.gmaps_api_key: '<YOUR GMAPS API KEY HERE>'

42/187

Step 4: build assets and create database schema

Build assets with
D:\Desktop\serverful-webapp> npm run webpack-dev

Then create the database and the data schema by running
D:\Desktop\serverful-webapp> npm run drop-database
D:\Desktop\serverful-webapp> npm run create-database
D:\Desktop\serverful-webapp> npm run create-schema

43/187

Step 5: run the app

Now you can start the dev server anche check out the app.
D:\Desktop\serverful-webapp> npm run serve

Once the server started, visit the webapp at localhost:8000

44/187

localhost:8000

Step 6: create a source bundle

Elastic Beanstalk requires a single WAR or ZIP archive
containing you app. To create a source bundle for our app, run
D:\Desktop\serverful-webapp> npm run create-source-

bundle

A serverful-app.zip (our source bundle) archive will be
created in the app root.

45/187

Step 7: Create a Database Instance

Go to the RDS Console and select “instances” .

46/187

https://eu-central-1.console.aws.amazon.com/rds/home?region=eu-central-1

Step 7: Create a Database Instance

Select “Launch DB instance” .

47/187

Step 7: Create a Database Instance

Select MySQL DBMS.

48/187

Step 7: Create a Database Instance

Enable only free-tier options and continue.

49/187

Step 7: Create a Database Instance

Select MySQL version 5.7.21

50/187

Step 7: Create a Database Instance

Select db.t2.micro instance.

51/187

Step 7: Create a Database Instance

Enter your desidered settings (remember the password!).

52/187

Step 7: Create a Database Instance

Be sure to select “create a new security group” .

53/187

Step 7: Create a Database Instance

Enter a database name for the instance (important!) and
leave the rest as is.

54/187

Step 7: Create a Database Instance

Click on “Launch DB Instance” .

55/187

Step 7: Create a Database Instance

The creation process takes around 15 minutes. Click on “View
DB Instance Details” to visit the detail page for the instance
you just created.

56/187

Step 7: Create a Database Instance

When done, the status in your instance detail page will
change to “available” .

57/187

Step 7: Create a Database Instance

Notice a few important elements in the details section. We’re
going to need these later.

58/187

Step 7: Create a Database Instance

We’ll need this instance to be accessible by our web
application. To do so we’re going to add a new rule to allow
all instances in the same security group to access the
database instance.

59/187

Step 7: Create a Database Instance

Click on the security group in the section Security Group Rules.

60/187

Step 7: Create a Database Instance

Select the Inbound tab then click on the Edit button.

61/187

Step 7: Create a Database Instance

Add a new rule as shown in the picture. Be sure to select the
same security group of the database instance. Then save and
return to the RDS instance detail page.

62/187

Step 7: Create a Database Instance

The rule you just added should be displayed among the other
two.

63/187

Step 7: Create a Beanstalk application

Go to the Beanstalk console and select Create New Application.

64/187

https://eu-central-1.console.aws.amazon.com/elasticbeanstalk/home?region=eu-central-1

Step 7: Create a Beanstalk application

Fill the form with your application information and continue.

65/187

Step 7: Create a Beanstalk application

Then select Create one now to create a new environment for
your application.

66/187

Step 7: Create a Beanstalk application

Select Web Server Environment, as we are going to deploy a
web application.

67/187

Step 7: Create a Beanstalk application

Fill the form with information about your environment.

68/187

Step 7: Create a Beanstalk application

Select PHP as preconfigured platform and upload the source
bundle you previously prepared.

69/187

Step 7: Create a Beanstalk application

Select Configure More Options and continue.

70/187

Step 7: Create a Beanstalk application

In the configuration page, select modify con the Instances
card.

71/187

Step 7: Create a Beanstalk application

In the instances configuration page, add the t2 instance to the
same security group as the DB instance. Then save and
continue.

72/187

Step 7: Create a Beanstalk application

In the configuration page, select modify con the Software card.

73/187

Step 7: Create a Beanstalk application

Enter “/public” as the document root and scroll down.

74/187

Step 7: Create a Beanstalk application

Enter the required enviroment parameters are show in the
picture. Be careful, deployment might fail if you mess up!

75/187

Step 7: Create a Beanstalk application

Click on Create Enviroment and continue.

76/187

Step 7: Create a Beanstalk application

Wait for the enviroment to be created. This takes about 10
minutes.

77/187

Step 8: Load balancing

Right now we have our application running on a single
(virtual) web server. That’s not scaling at all. Let’s take
advantage of the cloud and make the web application load
balanced.

78/187

Step 8: Load balancing

Select the environment’s configuration view, then select the
Capacity card.

79/187

Step 8: Load balancing

Select “Load balanced” as the environment type and
customize the Auto Scaling Group.

80/187

Step 8: Load balancing

Select some triggers (you can even setup time based ones),
then save your changes.

81/187

Step 9: Enjoy your web app

When it’s done you should see something like this. Click on
the URL to visit the load-balanced web application you just
deployed on Beanstalk!

82/187

Step 9: Enjoy your web app

Sweet!

83/187

Let’s get back to computing services

Amazon Lambda

You provide the code and say when to
run it.
Execution is triggered by events

S3, Cognito, DynamoDB
CodeCommit, Scheduled Event

Support for Java, Node.js, C# e Python
(more to come).
Pay only for actual execution time.
Run your code without thinking about
infrastructure

No need to worry about provisioning,
load balancing, scaling...

84/187

Amazon Lambda Notes

• Named after anonymous (lambda) functions?

• Stress the actual execution time part.

• Give some examples of events triggering lambda execution

– API Gateway call
– File uploaded, record updated/added, chron events, ecc...

Amazon Lambda: limits

AWS Lambda imposes some limits
Max 300 seconds execution time.
Max 3008 MB memory allocation.
Deployment package must be smaller
than 50 MB (negotiable).
No more than 10000 concurrent
invocation of a Lambda function in a
given region (negotiable).
For a complete list: Lambda docs

85/187

Amazon Lambda: FaaS

FaaS (Functions as a Service)

Functions are the unit of deployment
Executed in ephemeral, stateless containers
Event driven
No provisioning, scales automatically
Azure: Functions web

Google Cloud: Functions web

IBM: Cloud Functions web

Based on Apache OpenWhisk web

86/187

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://azure.microsoft.com/en-gb/services/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://openwhisk.apache.org/

Amazon Step Functions

Orchestrating Lambda functions
Define a state machine

87/187

Amazon Step Functions: sample I

Figure 3: Sequential steps, from [AWS]

88/187

Amazon Step Functions: sample II

Figure 4: Branching, from [AWS]

89/187

Amazon Step Functions: sample III

Figure 5: Parallel execution, from [AWS]

90/187

Amazon Step Functions: sample IV

Figure 6: Monitoring executions, from [AWS]

91/187

Amazon API Gateway

Create, publish, and secure APIs at any
scale
Authorizers (Cognito)

92/187

Serverless Architectures

Serverless?
What’s all the FaaS about?

93/187

Serverless trend

201
3-0
5-0
1

201
4-0
5-0
1

201
5-0
5-0
1

201
6-0
5-0
1

201
7-0
5-0
1

201
8-0
5-0
1

0

50

100

Figure 7: Last five years trend on Google for “serverless”

94/187

Serverless Architectures

No, they’re not actually serverless...
Rely on FaaS and third-party services so that traditional
always-on servers are no longer needed
No worries about provisioning and scaling
“Smarter” clients

95/187

Serverless use cases: sporadic requests

15:00 15:05 15:10 15:15 15:20 15:25 15:30
0

20

40

Time

Re
qu
es
ts

Incoming requests
Server capacity
Underload

Figure 8: Sporadic requests example

96/187

Serverless use cases: inconsistent requests

15:00 15:05 15:10 15:15 15:20 15:25 15:30
0

100

200

300

Time

Re
qu
es
ts

Incoming requests
Server capacity
Underload
Overload

Figure 9: Inconsistent requests example

97/187

Serverless Architectures: trade-offs

Pros
Reduce costs servers.LOL

No worries about
provisioning, scaling
Less time to market

Cons
Limits
Vendor lock-in
Testing

98/187

https://servers.lol

Serverless Architectures: tools

Serverless Framework web

“toolkit to deploy and operate
serverless architecture” .
Works with AWS, Google, Microsoft,
IBM.

APEX web

AWS SAM web

Serverless Application Model
“Define serverless applications with a
simple and clean syntax”
SAM Local: CLI tool for local
development and testing

99/187

Building a serverless web application with AWS

It’s demo time,
again!

100/187

https://serverless.com
http://apex.run
https://github.com/awslabs/serverless-application-model

What we’re going to do in this demo

Remember the web application for this very talk we
deployed earlier?
Now we’ll make it serverless, and add more features:

Sign-up and Authentication (Amazon Cognito)
Language detection and sentiment analysis on comments
(Amazon Comprehend)
Deploy it on a global CDN to minimize latency (Amazon
CloudFront)

101/187

Architecture

28/4/2018 serverless.xml

1/1

Dynamo

Lambda Function
getComments

Lambda Function
insertComment

API GatewayCloudFront

S3 Bucket

Cognito

Clients

Comprehend

 Skip tutorial

102/187

What you’ll need

An AWS account (a free one will suffice)
git version control (recommended)
Node.js
Python (recommended)

103/187

Step 1: get the app

Clone the git repository Github

D:> git clone https://github.com/luistar/serverless-
webapp.git serverless-webapp

104/187

https://github.com/luistar/serverless-webapp

Step 2: install dependencies

D:> cd serverless-webapp
D:\serverless-webapp> npm install

105/187

Step 3: install aws-mobile cli tool

D:\serverless-webapp> npm -g install awsmobile-cli

106/187

Step 4: create a new user on IAM

In order to use awsmobile-cli you’re gonna need an access
key id and a secret access key. If you don’t already have one,
go the IAM console and create a new user.

107/187

Step 4: create a new user on IAM

108/187

https://console.aws.amazon.com/iam/home?region=eu-central-1#/home

Step 4: create a new user on IAM

109/187

Step 4: create a new user on IAM

110/187

Step 4: create a new user on IAM

111/187

Step 4: create a new user on IAM

Be sure to write up your keys and to keep them safe!
 Read more about security

112/187

Step 5: configure awsmobile-cli

Configure AWS Mobile CLI.
D:\serverless-webapp> awsmobile configure

configure aws
? accessKeyId: <YOUR_ACCESS_KEY_ID>
? secretAccessKey: <YOUR_SECRET_ACCESS_KEY>
? region: eu-central-1

113/187

Step 6: initialize a new AWS Mobile project

D:\serverless-webapp> awsmobile init

Please tell us about your project:
? Where is your project's source directory: src
? Where is your project's distribution directory that

stores build artifacts: build
? What is your project's build command: npm.cmd run-

script build
? What is your project's start command for local test

run: npm.cmd run-script start

? What awsmobile project name would you like to use:
serverless-webapp

114/187

Step 6: initialize a new AWS Mobile project

Visit the AWS Mobile Console. Your newly created project
should be waiting for you there.

115/187

Step 7: create a Cognito User Pool

First we’re gonna need a Cognito User Pool to authenticate
our users. Let’s create one.

116/187

https://console.aws.amazon.com/mobilehub/home?region=eu-central-1#/

Step 7: create a Cognito User Pool

Visit the Cognito Console.

117/187

Step 7: create a Cognito User Pool

118/187

https://eu-central-1.console.aws.amazon.com/cognito/home?region=eu-central-1

Step 7: create a Cognito User Pool

Insert a name for your user pool.

119/187

Step 7: create a Cognito User Pool

Make sure only an email is required.

120/187

Step 7: create a Cognito User Pool

Review your configuration and create the pool.

121/187

Step 8: configure user sign-in in the mobile app console

Return to the AWS Mobile Console and open your project.

122/187

https://console.aws.amazon.com/mobilehub/home?region=eu-central-1#/

Step 8: configure user sign-in in the mobile app console

Add user sign in to the project.

123/187

Step 8: configure user sign-in in the mobile app console

Import your newly created user pool.

124/187

Step 8: configure user sign-in in the mobile app console

Pull your new project configuration with
D:\serverless-webapp> awsmobile pull

If you were to start the application locally with
D:\serverless-webapp> npm start

The authentication will now work.

125/187

Step 9: configure Amazon Dynamo Database

Next thing we’re gonna need is a database to store the
comments. In this tutorial we’ll use the NoSQL database
Amazon Dynamo.

126/187

Step 9: configure Amazon Dynamo Database

Visit the Dynamo Dashboard.

127/187

Step 9: configure Amazon Dynamo Database

Create a new Comments table as shown. Leave other fields
with their default values.

128/187

https://eu-central-1.console.aws.amazon.com/dynamodb/home?region=eu-central-1

Step 10: create a role for the Lambda functions

Before we create our Lambda functions, let’s create a new role
defining the authorizations we want them to have.

129/187

Step 10: create a role for the Lambda functions

Return to the IAM console and select the “role” tab, then the
“create role” button.

130/187

https://console.aws.amazon.com/iam/home?region=eu-central-1#/home

Step 10: create a role for the Lambda functions

Select “AWS Service” and “Lambda” in the wizard, as shown
in the picture.

131/187

Step 10: create a role for the Lambda functions

Add the AWSLambdaBasicExecutionRole, as shown.

132/187

Step 10: create a role for the Lambda functions

Insert a name and a description and create the role.

133/187

Step 10: create a role for the Lambda functions

Go back to the roles tab in the IAM Dashboard and select your
newly created role.

134/187

Step 10: create a role for the Lambda functions

Add inline policies to allow the role to access Dynamo DB and
Comprehend.

135/187

Step 10: create a role for the Lambda functions

Add an inline policy to allow this role to access Dynamo DB
tables.

136/187

Step 10: create a role for the Lambda functions

Save the inline policy.

137/187

Step 10: create a role for the Lambda functions

Now add another inline policy to allow this role to access
Comprehend’s detect language and detect sentiment features.

138/187

Step 10: create a role for the Lambda functions

Your role should look like this.

139/187

Step 11: create the Lambda functions

Go to the Lambda Dashboard and click on the “Create
function” button.

140/187

https://eu-central-1.console.aws.amazon.com/lambda/home?region=eu-central-1#/functions

Step 11: create the Lambda functions

Select “Author from scratch”

141/187

Step 11: create the Lambda functions

Name the function insertComment and select Node.js 6.10
as the runtime and the role we created earlies as the role.

142/187

Step 11: create the Lambda functions

Insert the code provided in the lambda/insertComment.js
file in the next screen, then save the lambda function.

143/187

Step 11: create the Lambda functions

Proceed similarly and create the getComments Lambda
function.

144/187

Step 12: create the APIs to expose the Lambda functions

Once we have our Lambda functions, let’s hook ’em up with an
API our web app can rely upon.

145/187

Step 12: create the APIs to expose the Lambda functions

Visit the API Gateway Dashboard

146/187

https://eu-central-1.console.aws.amazon.com/apigateway/home?region=eu-central-1#/apis

Step 12: create the APIs to expose the Lambda functions

Create a new API and select a name and a description.

147/187

Step 12: create the APIs to expose the Lambda functions

Select the Authorizers tab and create a new Authorizer for
your API. Give it a name, select the user pool we created
earlier, and enter “Authorization” in the “Token Source” field.

148/187

Step 12: create the APIs to expose the Lambda functions

Select the resources tab and create a new Resource

149/187

Step 12: create the APIs to expose the Lambda functions

Name the resource comments, enable CORS and continue.

150/187

Step 12: create the APIs to expose the Lambda functions

Select the comments resource and create a new POST method.

151/187

Step 12: create the APIs to expose the Lambda functions

As shown, select the insertComment Lambda function you
created earlier as the integration point.

152/187

Step 12: create the APIs to expose the Lambda functions

Give API Gateway the permission to invoke the Lambda
function

153/187

Step 12: create the APIs to expose the Lambda functions

Select the POST method on the comments resource, then
select the Method Request card.

154/187

Step 12: create the APIs to expose the Lambda functions

Select the authorizer you created earlies for the Authorization
field in the Settings section.

155/187

Step 12: create the APIs to expose the Lambda functions

Proceed similarly to hook up the GET method with the
getComments Lambda function. This time authorization is not
needed. We want non-authenticated users to be able to fetch
the comments.

156/187

Step 12: create the APIs to expose the Lambda functions

Once you are done setting up the GET method, select the root
resource, then Deploy API.

157/187

Step 12: create the APIs to expose the Lambda functions

Insert deployment stage informations and deploy.

158/187

Step 12: create the APIs to expose the Lambda functions

Select the stages tab and note the invoke url.

159/187

Step 12: create the APIs to expose the Lambda functions

Change the CommentsAPI class accordingly in
src/API/CommentsAPI.js.
class CommentsAPI {

constructor(){
this.endpoint = '<YOUR_INVOKE_URL_HERE>';

}

// ...

}

160/187

Step 13: host the static files with S3

Visit the S3 Dashboard and create a new bucket.

161/187

Step 13: host the static files with S3

Select your newly created S3 bucket.

162/187

https://s3.console.aws.amazon.com/s3/home?region=eu-central-1

Step 13: host the static files with S3

Under the properties tab, select the Static website hosting
card.

163/187

Step 13: host the static files with S3

Fill the form as shown in the picture. Note the Endpoint, as it
will be the URL of the website!

164/187

Step 13: host the static files with S3

Now we’ll show how to upload the static website via AWS CLI.
This operation can also be performed via the web interface of
the bucket.

165/187

Step 13: host the static files with S3

Install AWS CLI
D:\serverless-webapp> pip install awscli --upgrade

Then configure it
D:\serverless-webapp> aws configure
AWS Access Key ID [None]: <YOUR_ACCESS_KEY_ID>
AWS Secret Access Key [None]: <YOUR_SECRET_ACCESS_KEY>
Default region name [None]: eu-central-1
Default output format [None]: json

166/187

Step 13: host the static files with S3

Build the website
D:\serverless-webapp> npm run build-css
D:\serverless-webapp> npm run build

Then upload the files with
D:\serverless-webapp> aws s3 sync ./build s3://

serverless-webapp-bucket --acl public-read

167/187

Step 13: host the static files with S3

After the upload is done, your bucket should look like this.

168/187

Step 13: host the static files with S3

Visit the Static website hosting card again under the
properties tab, then click con the endpoint URL.

169/187

Step 13: host the static files with S3

You should see a very nice single-page serverless web
application!

170/187

Step 14: optimize latency with CloudFront

But wait, there’s more!
Such a nice web application wouldn’t be complete without a
global CDN to speed up load times. Se we’ll now set up
Amazon CloudFront to distribute the static files all over the
globe.

171/187

Step 14: optimize latency with CloudFront

Visit the CloudFront Dashboard and create a new distribution.

172/187

https://console.aws.amazon.com/cloudfront/home?region=eu-central-1

Step 14: optimize latency with CloudFront

Select web delivery method.

173/187

Step 14: optimize latency with CloudFront

Select your website bucket as the origin.

174/187

Step 14: optimize latency with CloudFront

Select index.html as the default root object.

175/187

Step 14: optimize latency with CloudFront

It takes a few minutes to setup the distribution. When it’s
done the status will change to Deployed.

176/187

Step 14: optimize latency with CloudFront

In the distribution detail page add a custom error response as
shown in the picture below to make sure 404 errors are
handled by the application.

177/187

Step 14: optimize latency with CloudFront

Now you can visit the application from the cloudfront URL

178/187

Take Home Messages

Take Home Messages

Cloud computing and service models
AWS
Deploy a “classic” web application on AWS
FaaS and serverless computing
Build and deploy a serverless one-page web application
on AWS

179/187

Security recommendations

Be very careful not to expose your IAM credentials;
Enforce the least privilege principle: each user should
only be able to access the minimum resources necessary
to fulfill its purpose.

Security recommendations

The very second you expose your credentials to the
public, some bot may use them to spin up large numbers
of EC2 instances. If that happens, the billing might be a
scary surprise!
Tools like the AWS-developed git-secrets help
avoiding the exposure of IAM credentials

 Back to the tutorial

IAM best practices web

Git Secrets - Github repository web

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://github.com/awslabs/git-secrets

Nice readings i

[Jan16] Badri Janakiraman. Serverless. June 20, 2016. url:
https://martinfowler.com/bliki/
Serverless.html (visited on 05/21/2018).

[LF14] James Lewis and Martin Fowler. Microservices: a
definition of this new architectural term. Mar. 25,
2014. url: https://martinfowler.com/
articles/microservices.html (visited on
05/21/2018).

[Rob16] Mike Roberts. Serverless Architectures. Apr. 6, 2016.
url: https://martinfowler.com/articles/
serverless.html (visited on 05/21/2018).

Nice readings ii

[Rus16] Mark Russinovich. Microservices: An application
revolution powered by the cloud. Mar. 17, 2016. url:
https://azure.microsoft.com/it-
it/blog/microservices-an-application-
revolution-powered-by-the-cloud/ (visited
on 05/21/2018).

[Ser] Serverless inc. Serverless guide. url:
https://github.com/serverless/guide
(visited on 05/21/2018).

https://martinfowler.com/bliki/Serverless.html
https://martinfowler.com/bliki/Serverless.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://azure.microsoft.com/it-it/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://azure.microsoft.com/it-it/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://azure.microsoft.com/it-it/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://github.com/serverless/guide

References i

[Amaa] Amazon Web Services. What is cloud computing?.
url: https://aws.amazon.com/what-is-
cloud-computing/ (visited on 03/30/2018).

[Amab] Inc. Amazon Web Services. Set up a Continuous
Deployment Pipeline using AWS CodePipeline. url:
https://aws.amazon.com/it/getting-
started/tutorials/continuous-
deployment-pipeline/ (visited on 06/10/2018).

References ii

[Amac] Inc. Amazon Web Services. Tutorial: Create a
Four-Stage Pipeline. url: https:
//docs.aws.amazon.com/codepipeline/
latest/userguide/tutorials-four-stage-
pipeline.html (visited on 06/10/2018).

[Ama17] Inc. Amazon Web Services. Practicing Continuous
Integration and Continuous Delivery on AWS.
Tech. rep. June 2017. url: https:
//d1.awsstatic.com/whitepapers/DevOps/
practicing-continuous-integration-
continuous-delivery-on-AWS.pdf (visited on
06/01/2018).

https://aws.amazon.com/what-is-cloud-computing/
https://aws.amazon.com/what-is-cloud-computing/
https://aws.amazon.com/it/getting-started/tutorials/continuous-deployment-pipeline/
https://aws.amazon.com/it/getting-started/tutorials/continuous-deployment-pipeline/
https://aws.amazon.com/it/getting-started/tutorials/continuous-deployment-pipeline/
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-four-stage-pipeline.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-four-stage-pipeline.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-four-stage-pipeline.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-four-stage-pipeline.html
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf

References iii

[AWS] AWS. AWS Step Functions. url:
https://aws.amazon.com/step-
functions/?nc1=f_ls (visited on 05/01/2018).

[Gar17] Gartner. Gartner Forecasts Worldwide Public Cloud
Services Revenue to Reach $260 Billion in 2017.
Oct. 12, 2017. url: https:
//www.gartner.com/newsroom/id/3815165
(visited on 03/30/2018).

References iv

[Syn18] Synergy Research Group. Cloud Growth Rate
Increases; Amazon, Microsoft & Google all Gain
Market Share. Feb. 2, 2018. url: https:
//www.srgresearch.com/articles/cloud-
growth-rate-increases-amazon-
microsoft-google-all-gain-market-share
(visited on 03/30/2018).

https://aws.amazon.com/step-functions/?nc1=f_ls
https://aws.amazon.com/step-functions/?nc1=f_ls
https://www.gartner.com/newsroom/id/3815165
https://www.gartner.com/newsroom/id/3815165
https://www.srgresearch.com/articles/cloud-growth-rate-increases-amazon-microsoft-google-all-gain-market-share
https://www.srgresearch.com/articles/cloud-growth-rate-increases-amazon-microsoft-google-all-gain-market-share
https://www.srgresearch.com/articles/cloud-growth-rate-increases-amazon-microsoft-google-all-gain-market-share
https://www.srgresearch.com/articles/cloud-growth-rate-increases-amazon-microsoft-google-all-gain-market-share

	A little bit of context
	Cloud Computing

	An AWS bestiarium
	Database services
	Cloud storage
	Developer Tools
	Machine Learning
	Miscellanea
	Computing

	Serverless architectures
	Demo: a serverless web application
	Take Home Messages
	Appendix

