
Inspecting Code Churns to
Prioritize Test Cases
Luigi Libero Lucio Starace
University of Naples Federico II, dept. of Electrical Engineering and Information Technology

luigiliberolucio.starace@unina.it

December 9, 2020

mailto:luigiliberolucio.starace@unina.it

Regression Testing

• Within Software Maintenance,
changes can impact previously
validated functionalities

• Regression Testing aims at
making sure that the unchanged
parts have not been adversely
affected by the changes

2

Regression Testing: Challenges

• Test suites can take up to days to
execute

• Sometimes there’s not enough
time or resources!

• And even if there were, why
waste them?

3

Test Prioritization

The order in which test cases in a test suite are executed matters!

A «good» ordering can improve fault detection and coverage rates.

• Faults are detected earlier;

• Test suite gives satisfactory confidence in the system’s reliability
earlier.

4

Test A

passes

✓

Test D

fault
detected

✗

Test B

passes

✓

Test E

passes

✓

Test F

fault
detected

✗

Test C

passes

✓

Time

Test A

passes

✓

Test B

passes

✓

Test C

passes

✓

Test D

fault
detected

✗

Test Prioritization

The order in which test cases in a test suite are executed matters!

A «good» ordering can improve fault detection and coverage rates.

• Faults are detected earlier;

• Test suite gives satisfactory confidence in the system’s reliability
earlier.

5

Test E

passes

✓

Test F

fault
detected

✗

Time

Test Prioritization

• We don’t know which tests will
reveal faults before executing
them

• How can we find a «good»
order?

• Several Heuristics have been
proposed
• Code Coverage

• History Information

• Code Churns

6

1 void hello() {
2 print("Hello ICTSS!");
3 print("How’s it going?");
4 }
5

Code Churns

Code churn1 measures the source code changes between two versions
of a Software.

7

1 void hello() {
2 String s = "ICTSS";
3 print("Hello "+s);
4 }
5

Version V Version V’

1 Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).

Code Churns

Code churn1 measures the source code changes between two versions
of a Software.

8

1 void hello() {
2 String s = "ICTSS";
3 print("Hello "+s);
4 }

-

+

1 void hello() {
String s = "ICTSS";

2 print("Hello ICTSS!");
3 print("How’s it going?");
4 }

1 Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).

Version V Version V’

Our proposal

9

Introducing Churn Coverage

Given a test case 𝑡, we defined its churn coverage w.r.t. version 𝑉 as
the tuple:

• 𝑐 is the number of changed code units (w.r.t. 𝑉’) which are covered by 𝑡

• 𝑑 is the number of deleted code units (w.r.t. 𝑉’) which are covered by 𝑡

• 𝑢 is the number of unchanged code units (w.r.t. 𝑉’) which are covered by
𝑡 (i.e. covered code units that are neither changed nor deleted)

10

⟨𝑐, 𝑑, 𝑢⟩

Churn Coverage: Example

11

1 int foo(int a) {
2 int x = 0;
3 x = 5;
4 if(a > 10) {
5 a = a + 1;
6 x = a + 2;
7 }
8 else {
9 x = a * 2;
10 }
11 return x;
12 }

-

Version V Version V’

1 int foo(int a) {
2 int x = 5;

x = 5;
3 if(a > 10) {
4 a = a + 1;
5 x = a + 2;
6 }
7 else {
8 x = a * 3;
9 }
10 return x - 4;
11 }

Churn Coverage: Example

12

Version V Test case t

⟨𝑐, 𝑑, 𝑢⟩

1 int foo(int a) {
2 int x = 0;
3 x = 5;
4 if(a > 10) {
5 a = a + 1;
6 x = a + 2;
7 }
8 else {
9 x = a * 2;
10 }
11 return x;
12 }

-

Version V’

1 int foo(int a) {
2 int x = 5;

x = 5;
3 if(a > 10) {
4 a = a + 1;
5 x = a + 2;
6 }
7 else {
8 x = a * 3;
9 }
10 return x - 4;
11 }

⟨𝑐, 𝑑, 𝑢⟩
| |

⟨2,1,3⟩

⟨𝑐, 𝑑, 𝑢⟩

Churn Coverage: Example

13

Version V Test case t

1 int foo(int a) {
2 int x = 0;
3 x = 5;
4 if(a > 10) {
5 a = a + 1;
6 x = a + 2;
7 }
8 else {
9 x = a * 2;
10 }
11 return x;
12 }

-

Version V’

1 int foo(int a) {
2 int x = 5;

x = 5;
3 if(a > 10) {
4 a = a + 1;
5 x = a + 2;
6 }
7 else {
8 x = a * 3;
9 }
10 return x - 4;
11 }

Test Prioritization based on Churn Coverage

A prioritization strategy is an
order relation on the test cases.

We can prioritize by sorting the
test cases according to these
relations.

Main contribution: We designed
and experimentally evaluated
three novel prioritization
strategies.

14

Baseline Strategy: Total Coverage1

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the
respective churn coverage.

15

𝑡 ≼𝑇𝑜𝑡 𝑡
′ ⇔ 𝑐 + 𝑑 + 𝑢 ≤ 𝑐′ + 𝑑′ + 𝑢′

Total number of
code units

covered by 𝑡′

Total number of
code units

covered by 𝑡

1 Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. (2014). A unified test case prioritization
approach. ACM Transactions on Software Engineering and Methodology (TOSEM), 24(2), 1-31.

Prioritize Churn Strategy

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the
respective churn coverage.

16

𝑡 ≼𝐶ℎ𝑢𝑟𝑛 𝑡′ ⇔
𝑐 + 𝑑

𝑐 + 𝑑 + 𝑢
≤

𝑐′ + 𝑑′

𝑐′ + 𝑑′ + 𝑢′

Prioritize Unchanged Strategy

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the
respective churn coverage.

17

𝑡 ≼𝑈𝑛𝑐ℎ 𝑡′ ⇔
𝑢

𝑐 + 𝑑 + 𝑢
≤

𝑢′

𝑐′ + 𝑑′ + 𝑢′

Combined Strategy

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the
respective churn coverage.

18

𝑡 ≼𝐶𝑜𝑚𝑏 𝑡
′ ⇔

𝑐 + 𝑑 < 𝑐′ + 𝑑′
∨

(𝑐 + 𝑑) = (𝑐′ + 𝑑′) ∧ 𝑢 ≤ 𝑢′

Empirical Evaluation

To assess the effectiveness of the proposed strategies, we
implemented them in a prioritization toolchain

19

Java Source
Code

jUnit
Test Cases

Test
Coverage
Reports

Code Churn
Calculator

Churn
Statistics

Prioritization
Module

Prioritized
Test Cases

Empirical Evaluation: Subject

As a subject for our experiments, we selected Siena (Scalable Internet
Event Notification Architecture)

• 7 versions

• ~11k lines of code

• ~500 test cases

20

Results

21

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

5
0

5

5
1

9

5
3

3

5
4

7

5
6

1

C
o

ve
ra

ge
 P

ro
fi

t

Prioritized Test Cases

Prioritization Coverage Profits for Siena (V6 → V7)

Baseline Prioritize Unchanged Prioritize Changed Combined

Are all code changes equal?

22

Some changes are more critical

• Renaming a local variable in a
method is less critical

• Changing the condition in a
branching statement on in a
loop, on the other hand…

We should prioritize tests covering
code with more critical changes

23

A New Approach to Code Churn Evaluation

Standard Approach
Did this code unit change?

➢Yes/No

New Approach
How much did this code unit
change?

➢Score in [0,1]
➢0 if the unit is unchanged

➢1 if the unit changed significantly

➢Every value in between!

24

How do we do it?

• We use a Abstract Syntax Tree (AST) representation for the two
versions of a code unit

• We use suitably-designed Tree Kernel Functions to compute a
diversity score.

25

Code Unit A

Code Unit A’

AST A

AST A’

Tree Kernel
Function

Diversity
Score

Version V

Version V’

Abstract Syntax Tree Representation

26

Method
Body Block

if
Statement

then
Block

else
Block

Condition

Less than
return

Statement
return

Statement

Unary
Minus

«x» «0»

«x»

«x»

1 public float abs(float x) {
2 if(x < 0)
3 return -x;
4 else
5 return x;
6 }

• Structured information
• Ignores indentation,

whitespaces, etc…

Tree Kernel Functions

• New class of functions successfully applied in Natural Language
Processing.

• Compute similarity between tree structures.

• Highly Customizable
• Easy to customize which tree parts have a greater impact on similarity

• Can be computed efficiently using Dynamic Programming and
memoization.

• Recently used in Software Engineering for clone detection, but never
in test case prioritization

27

Future Works

• We are working on extending
our prioritization toolchain with
this refined approach

• We plan to conduct a more
extensive evaluation
• on several open source software

projects

• using fault detection-related
metrics

28

29

Luigi Libero Lucio Starace

luigiliberolucio.starace@unina.it
Inspecting Code Churns to Prioritize Test Cases

mailto:luigiliberolucio.starace@unina.it

