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Regression Testing

 Within Software Maintenance,
changes can impact previously
validated functionalities

* Regression Testing aims at
making sure that the unchanged
parts have not been adversely
affected by the changes




Regression Testing: Challenges

 Test suites can take up to days to
execute

* Sometimes there’s not enough
time or resources!

* And even if there were, why
waste them?




Test Prioritization

The order in which test cases in a test suite are executed matters!
A «good» ordering can improve fault detection and coverage rates.
e Faults are detected earlier;

 Test suite gives satisfactory confidence in the system’s reliability
earlier.

Test A Test B Test C Test D Test E Test F
v v v X v X
passes passes passes fault passes fault
detected detected

Time
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Test Prioritization

 We don’t know which tests will
reveal faults before executing
them

* How can we find a «good»
order?

* Several Heuristics have been
proposed
* Code Coverage
* History Information
* Code Churns

*****




Code Churns

Code churn! measures the source code changes between two versions
of a Software.

Version V Version V'
1 void hello() { 1 void hello() {
2 String s = "ICTSS"; 2 print("Hello ICTSS!");
3 print("Hello "+s); 3 print("How’s it going?");
4} 4}
5 5

! Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).
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Our proposal



Introducing Churn Coverage

Given a test case t, we defined its churn coverage w.r.t. version I/ as
the tuple:

(c,d,u)

e ¢ is the number of changed code units (w.r.t. I’’) which are covered by t
* d is the number of deleted code units (w.r.t. I’’) which are covered by t

* u is the number of unchanged code units (w.r.t. V') which are covered by
t (i.e. covered code units that are neither changed nor deleted)
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Churn Coverage: Example

Version V

int foo(int a) {

int x = 0;

X = 5;

if(a > 10) {

a + 1;
a + 2;

return x;

Version V’

1 int foo(int a) {

int x = 5;

X = 5;

if(a > 10) {

a + 1;
a + 2;

QU

return x - 4;
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Churn Coverage: Example

Version V

int foo(int a) {

int x = 0;

X = 5;

if(a > 10) {
a a + 1;
X a + 2;

}

else {
X =a * 2;
}

return x;

Test case t

(c,d,u)

Version V’

1 int foo(int a) {

int x = 5;

X = 5;

if(a > 10) {
a a + 1;
X a + 2;

}

else {
X =a * 3;

}

return x - 4;
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Churn Coverage: Example

Version V

1 int foo(int a) {

2 int x = 0;

3 X = 5;

4 if(a > 10) {

5 a =a+ 1;
6 X = a + 2;
7 }

8 else {

9 X =a * 2;
10 }
11 return x;

Test case t

(c,d,u)

||
(2,1,3)

Version V’

1 int foo(int a) {

int x = 5;

X = 5;

if(a > 10) {
a a + 1;
X a + 2;

}

else {
X =a * 3;

}

return x - 4;
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Test Prioritization based on Churn Coverage

A prioritization strategy is an
order relation on the test cases.

We can prioritize by sorting the — 1 =1
test cases according to these “ : :
relations. | = |2= | =

Main contribution: We designed
and experimentally evaluated
three novel prioritization
strategies.

14



Baseline Strategy: Total Coverage!

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

t<port ©c+d+u<sc' +d +u

N\ J N\ J
Y Y
Total number of Total number of
code units code units
covered by t covered by t’

1 Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. (2014). A unified test case prioritization
approach. ACM Transactions on Software Engineering and Methodology (TOSEM), 24(2), 1-31.



Prioritize Churn Strategy

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

!/
<t e c+d - c'+d ’
c+d+u c'+d +u




Prioritize Unchanged Strategy

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

/

u u
t < t' & <
~Unch c+d+u_—c +d +u




Combined Strategy

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

(c+d)<(c+d)
t <comp t & \%
(c+d)=(c"+dH)Au<u



Empirical Evaluation

To assess the effectiveness of the proposed strategies, we
implemented them in a prioritization toolchain

S, >
== |

Java Source Code Churn Churn
Code Calculator Statistics

Prioritization Prioritized

JACOCO | Module Test Cases

Java Code Coverage

jUnit Test
Test Cases Coverage
Reports



Empirical Evaluation: Subject

As a subject for our experiments, we selected Siena (Scalable Internet
Event Notification Architecture)

Publish/Subscribe
,_ Wide-Area Event Notification

e 7 versions
e ~¥11k lines of code
* “500 test cases
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Results

Prioritization Coverage Profits for Siena (V6 - V7)
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Are all code changes equal?




Some changes are more critical

* Renaming a local variable in a
method is less critical

* Changing the condition in a
branching statement onin a
loop, on the other hand...

l

We should prioritize tests covering
code with more critical changes
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A New Approach to Code Churn Evaluation

Standard Approach New Approach
Did this code unit change? How much did this code unit
»Yes/No change?

»Score in [0,1]
» 0 if the unit is unchanged
» 1 if the unit changed significantly
» Every value in between!



How do we do it?

* We use a Abstract Syntax Tree (AST) representation for the two
versions of a code unit

* We use suitably-designed Tree Kernel Functions to compute a
diversity score.

Version V (/ >—'6%b

Code Unit A AST A

M
Tree Kernel Diversity
Version V’ </>—> Function Score

Code Unit A’ AST A’
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Abstract Syntax Tree Representation

1 public float abs(float x) {
2 if(x < Q)

3 return -Xx;

4 else

5 return Xx;

6 }

e Structured information
* Ignores indentation,
whitespaces, etc...

Method
Body Block
if
Statement
.T then élse
Condition Block Block
return return
Less than
Statement Statement
«X» «0» Ur'1ary «X»
Minus

UX»
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Tree Kernel Functions

* New class of functions successfully applied in Natural Language
Processing.

 Compute similarity between tree structures.
* Highly Customizable

* Easy to customize which tree parts have a greater impact on similarity

* Can be computed efficiently using Dynamic Programming and
memoization.

* Recently used in Software Engineering for clone detection, but never
In test case prioritization
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Future Works

* We are working on extending
our prioritization toolchain with
this refined approach

* We plan to conduct a more
extensive evaluation

* on several open source software
projects

 using fault detection-related
metrics
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Introducing Churn Coverage

Given a test case t, we defined its churn coverage w.r.t. version I/ as
the tuple:

(c,d,u)

* ¢ is the number of changed code units (w.r.t. V') which are covered by t
* d is the number of deleted code units (w.r.t. V’) which are covered by t

* u is the number of unchanged code units (w.r.t. IV’) which are covered by
t (i.e. covered code units that are neither changed nor deleted)

Test Prioritization based on Churn Coverage

A prioritization strategy is an
order relation on the test cases. @

We can prioritize by sorting the
test cases according to these : :
relations. v B e = e =

Main contribution: We designed

and experimentally evaluated

three novel prioritization

strategies. / |

Prioritization Coverage Profits for Siena (V6 = V7)

Coverage Profit

Prioritized Test Cases
——Baseline ===Prioritize Unchanged ——Prioritize Changed Combined

Tree Kernel Functions

Inspecting Code Churns to Prioritize Test Cases

1 public float abs(float x) { Method
2 if(x < @) Body Block
3 return -x; I
4 else if
5 return x; Statement
6} |
then else
Condition
. . Block Block
* Structured information [ I I
* |gnores indentation, Less than return return
. Statement Statement
whitespaces, etc... I
Unary
wxn || wuOn Minus

Luigi Libero Lucio Starace
luigiliberolucio.starace@unina.it

29


mailto:luigiliberolucio.starace@unina.it

