Inspecting Code Churns to
Prioritize Test Cases

Luigi Libero Lucio Starace

University of Naples Federico I, dept. of Electrical Engineering and Information Technology

luigiliberolucio.starace@unina.it

December 9, 2020

mailto:luigiliberolucio.starace@unina.it

Regression Testing

 Within Software Maintenance,
changes can impact previously
validated functionalities

* Regression Testing aims at
making sure that the unchanged
parts have not been adversely
affected by the changes

Regression Testing: Challenges

 Test suites can take up to days to
execute

* Sometimes there’s not enough
time or resources!

* And even if there were, why
waste them?

Test Prioritization

The order in which test cases in a test suite are executed matters!
A «good» ordering can improve fault detection and coverage rates.
e Faults are detected earlier;

 Test suite gives satisfactory confidence in the system’s reliability
earlier.

Test A Test B Test C Test D Test E Test F
v v v X v X
passes passes passes fault passes fault
detected detected

Time

Test Prioritization

The order in which test cases in a test suite are executed matters!
A «good» ordering can improve fault detection and coverage rates.
e Faults are detected earlier;

 Test suite gives satisfactory confidence in the system’s reliability
earlier.

Test D Test F Test A Test B Test C Test E
X X v v v v
fault fault passes passes passes passes
detected detected

Time

Test Prioritization

 We don’t know which tests will
reveal faults before executing
them

* How can we find a «good»
order?

* Several Heuristics have been
proposed
* Code Coverage
* History Information
* Code Churns

Code Churns

Code churn! measures the source code changes between two versions
of a Software.

Version V Version V'
1 void hello() { 1 void hello() {
2 String s = "ICTSS"; 2 print("Hello ICTSS!");
3 print("Hello "+s); 3 print("How’s it going?");
4} 4}
5 5

! Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).

Code Churns

Code churn! measures the source code changes between two versions
of a Software.

Version V Version V’
1 void hello() { 1 void hello() {
2 String s = "ICTSS"; - String s = "ICTSS";
3 print("Hello "+s); 2 print("Hello ICTSS!");
4 } +]3 print("How’s it going?");
4}

! Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).

Our proposal

Introducing Churn Coverage

Given a test case t, we defined its churn coverage w.r.t. version I/ as
the tuple:

(c,d,u)

e ¢ is the number of changed code units (w.r.t. I’’) which are covered by t
* d is the number of deleted code units (w.r.t. I’’) which are covered by t

* u is the number of unchanged code units (w.r.t. V') which are covered by
t (i.e. covered code units that are neither changed nor deleted)

10

Churn Coverage: Example

Version V

int foo(int a) {

int x = 0;

X = 5;

if(a > 10) {

a + 1;
a + 2;

return x;

Version V’

1 int foo(int a) {

int x = 5;

X = 5;

if(a > 10) {

a + 1;
a + 2;

QU

return x - 4;

11

Churn Coverage: Example

Version V

int foo(int a) {

int x = 0;

X = 5;

if(a > 10) {
a a + 1;
X a + 2;

}

else {
X =a * 2;
}

return x;

Test case t

(c,d,u)

Version V’

1 int foo(int a) {

int x = 5;

X = 5;

if(a > 10) {
a a + 1;
X a + 2;

}

else {
X =a * 3;

}

return x - 4;

12

Churn Coverage: Example

Version V

1 int foo(int a) {

2 int x = 0;

3 X = 5;

4 if(a > 10) {

5 a =a+ 1;
6 X = a + 2;
7 }

8 else {

9 X =a * 2;
10 }
11 return x;

Test case t

(c,d,u)

||
(2,1,3)

Version V’

1 int foo(int a) {

int x = 5;

X = 5;

if(a > 10) {
a a + 1;
X a + 2;

}

else {
X =a * 3;

}

return x - 4;

13

Test Prioritization based on Churn Coverage

A prioritization strategy is an
order relation on the test cases.

We can prioritize by sorting the — 1 =1
test cases according to these “ : :
relations. | = |2= | =

Main contribution: We designed
and experimentally evaluated
three novel prioritization
strategies.

14

Baseline Strategy: Total Coverage!

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

t<port ©c+d+u<sc' +d +u

N\ J N\ J
Y Y
Total number of Total number of
code units code units
covered by t covered by t’

1 Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. (2014). A unified test case prioritization
approach. ACM Transactions on Software Engineering and Methodology (TOSEM), 24(2), 1-31.

Prioritize Churn Strategy

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

!/
<t e c+d - c'+d ’
c+d+u c'+d +u

Prioritize Unchanged Strategy

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

/

u u
t < t' & <
~Unch c+d+u_—c +d +u

Combined Strategy

Let t and t'be two tests, and let (c,d,u) and (c¢’,d’,u’) be the
respective churn coverage.

(c+d)<(c+d)
t <comp t & \%
(c+d)=(c"+dH)Au<u

Empirical Evaluation

To assess the effectiveness of the proposed strategies, we
implemented them in a prioritization toolchain

S, >
== |

Java Source Code Churn Churn
Code Calculator Statistics

Prioritization Prioritized

JACOCO | Module Test Cases

Java Code Coverage

jUnit Test
Test Cases Coverage
Reports

Empirical Evaluation: Subject

As a subject for our experiments, we selected Siena (Scalable Internet
Event Notification Architecture)

Publish/Subscribe
,_ Wide-Area Event Notification

e 7 versions
e ~¥11k lines of code
* “500 test cases

20

Results

Prioritization Coverage Profits for Siena (V6 - V7)

0,8 r_.f—

o e
= 0,7
°
a 0,6
qJI ,
a0 0,5 4 J
©
o 04
>
80,3
0,2
0,1
0
=N O MO N AN OOMNMMN AU OODOON-EASIND NN A1 OOO NS INDOONONCEASWmMOoOOMm N -
A N < IDN 00O OO A N < 1D WO A AN MWW OO O AN MMM ONOOCOANNWNS ONO
A A AN AN AN AN AN AN OO NN ST T

Prioritized Test Cases
—Baseline —Prioritize Unchanged = —Prioritize Changed Combined

505
519
533
547
561

Are all code changes equal?

Some changes are more critical

* Renaming a local variable in a
method is less critical

* Changing the condition in a
branching statement onin a
loop, on the other hand...

l

We should prioritize tests covering
code with more critical changes

23

A New Approach to Code Churn Evaluation

Standard Approach New Approach
Did this code unit change? How much did this code unit
»Yes/No change?

»Score in [0,1]
» 0 if the unit is unchanged
» 1 if the unit changed significantly
» Every value in between!

How do we do it?

* We use a Abstract Syntax Tree (AST) representation for the two
versions of a code unit

* We use suitably-designed Tree Kernel Functions to compute a
diversity score.

Version V (/ >—'6%b

Code Unit A AST A

M
Tree Kernel Diversity
Version V’ </>—> Function Score

Code Unit A’ AST A’

25

Abstract Syntax Tree Representation

1 public float abs(float x) {
2 if(x < Q)

3 return -Xx;

4 else

5 return Xx;

6 }

e Structured information
* Ignores indentation,
whitespaces, etc...

Method
Body Block
if
Statement
.T then élse
Condition Block Block
return return
Less than
Statement Statement
«X» «0» Ur'1ary «X»
Minus

UX»

26

Tree Kernel Functions

* New class of functions successfully applied in Natural Language
Processing.

 Compute similarity between tree structures.
* Highly Customizable

* Easy to customize which tree parts have a greater impact on similarity

* Can be computed efficiently using Dynamic Programming and
memoization.

* Recently used in Software Engineering for clone detection, but never
In test case prioritization

27

Future Works

* We are working on extending
our prioritization toolchain with
this refined approach

* We plan to conduct a more
extensive evaluation

* on several open source software
projects

 using fault detection-related
metrics

28

Introducing Churn Coverage

Given a test case t, we defined its churn coverage w.r.t. version I/ as
the tuple:

(c,d,u)

* ¢ is the number of changed code units (w.r.t. V') which are covered by t
* d is the number of deleted code units (w.r.t. V’) which are covered by t

* u is the number of unchanged code units (w.r.t. IV’) which are covered by
t (i.e. covered code units that are neither changed nor deleted)

Test Prioritization based on Churn Coverage

A prioritization strategy is an
order relation on the test cases. @

We can prioritize by sorting the
test cases according to these : :
relations. v B e = e =

Main contribution: We designed

and experimentally evaluated

three novel prioritization

strategies. / |

Prioritization Coverage Profits for Siena (V6 = V7)

Coverage Profit

Prioritized Test Cases
——Baseline ===Prioritize Unchanged ——Prioritize Changed Combined

Tree Kernel Functions

Inspecting Code Churns to Prioritize Test Cases

1 public float abs(float x) { Method
2 if(x < @) Body Block
3 return -x; I
4 else if
5 return x; Statement
6} |
then else
Condition
. . Block Block
* Structured information [I I
* |gnores indentation, Less than return return
. Statement Statement
whitespaces, etc... I
Unary
wxn || wuOn Minus

Luigi Libero Lucio Starace
luigiliberolucio.starace@unina.it

29

mailto:luigiliberolucio.starace@unina.it

