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Regression Testing

• Within Software Maintenance, 
changes can impact previously 
validated functionalities

• Regression Testing aims at 
making sure that the unchanged 
parts have not been adversely 
affected by the changes
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Regression Testing: Challenges

• Test suites can take up to days to 
execute

• Sometimes there’s not enough 
time or resources!

• And even if there were, why 
waste them?
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Test Prioritization

The order in which test cases in a test suite are executed matters!

A «good» ordering can improve fault detection and coverage rates.

• Faults are detected earlier;

• Test suite gives satisfactory confidence in the system’s reliability 
earlier.
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Test Prioritization

• We don’t know which tests will 
reveal faults before executing 
them

• How can we find a «good» 
order?

• Several Heuristics have been 
proposed
• Code Coverage

• History Information

• Code Churns
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1 void hello() {
2 print("Hello ICTSS!");
3 print("How’s it going?");
4 }
5

Code Churns

Code churn1 measures the source code changes between two versions 
of a Software.
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1 void hello() {
2 String s = "ICTSS";
3 print("Hello "+s);
4 }
5

Version V Version V’

1 Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect 
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).



Code Churns

Code churn1 measures the source code changes between two versions 
of a Software.
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1 void hello() {
2 String s = "ICTSS";
3 print("Hello "+s);
4 }

-

+

1 void hello() {
String s = "ICTSS";

2 print("Hello ICTSS!");
3 print("How’s it going?");
4 }

1 Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system defect 
density. In Proceedings of the 27th international conference on Software engineering (pp. 284-292).
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Our proposal
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Introducing Churn Coverage

Given a test case 𝑡, we defined its churn coverage w.r.t. version 𝑉 as 
the tuple:

• 𝑐 is the number of changed code units (w.r.t. 𝑉’) which are covered by 𝑡

• 𝑑 is the number of deleted code units (w.r.t. 𝑉’) which are covered by 𝑡

• 𝑢 is the number of unchanged code units (w.r.t. 𝑉’) which are covered by 
𝑡 (i.e. covered code units that are neither changed nor deleted)
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⟨𝑐, 𝑑, 𝑢⟩



Churn Coverage: Example
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1 int foo(int a) {
2 int x = 0;
3 x = 5;
4 if(a > 10) {
5 a = a + 1;
6 x = a + 2;
7 }
8 else {
9 x = a * 2;
10 }
11 return x;
12 }

-

Version V Version V’

1 int foo(int a) {
2 int x = 5;

x = 5;
3 if(a > 10) {
4 a = a + 1;
5 x = a + 2;
6 }
7 else {
8 x = a * 3;
9 }
10 return x - 4;
11 }
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Test Prioritization based on Churn Coverage

A prioritization strategy is an 
order relation on the test cases.

We can prioritize by sorting the 
test cases according to these 
relations.

Main contribution: We designed 
and experimentally evaluated 
three novel prioritization 
strategies.
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Baseline Strategy: Total Coverage1

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the 
respective churn coverage.
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𝑡 ≼𝑇𝑜𝑡 𝑡
′ ⇔ 𝑐 + 𝑑 + 𝑢 ≤ 𝑐′ + 𝑑′ + 𝑢′

Total number of
code units 

covered by 𝑡′

Total number of
code units 

covered by 𝑡

1  Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. (2014). A unified test case prioritization 
approach. ACM Transactions on Software Engineering and Methodology (TOSEM), 24(2), 1-31.



Prioritize Churn Strategy

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the 
respective churn coverage.
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𝑡 ≼𝐶ℎ𝑢𝑟𝑛 𝑡′ ⇔
𝑐 + 𝑑

𝑐 + 𝑑 + 𝑢
≤

𝑐′ + 𝑑′

𝑐′ + 𝑑′ + 𝑢′



Prioritize Unchanged Strategy

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the 
respective churn coverage.

17

𝑡 ≼𝑈𝑛𝑐ℎ 𝑡′ ⇔
𝑢

𝑐 + 𝑑 + 𝑢
≤

𝑢′

𝑐′ + 𝑑′ + 𝑢′



Combined Strategy

Let 𝑡 and 𝑡′be two tests, and let 𝑐, 𝑑, 𝑢 and ⟨𝑐′, 𝑑′, 𝑢′⟩ be the 
respective churn coverage.
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𝑡 ≼𝐶𝑜𝑚𝑏 𝑡
′ ⇔

𝑐 + 𝑑 < 𝑐′ + 𝑑′
∨

(𝑐 + 𝑑) = (𝑐′ + 𝑑′) ∧ 𝑢 ≤ 𝑢′



Empirical Evaluation

To assess the effectiveness of the proposed strategies, we 
implemented them in a prioritization toolchain
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Empirical Evaluation: Subject

As a subject for our experiments, we selected Siena (Scalable Internet 
Event Notification Architecture)

• 7 versions

• ~11k lines of code

• ~500 test cases
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Results
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Are all code changes equal?
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Some changes are more critical

• Renaming a local variable in a 
method is less critical

• Changing the condition in a 
branching statement on in a 
loop, on the other hand…

We should prioritize tests covering 
code with more critical changes
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A New Approach to Code Churn Evaluation

Standard Approach
Did this code unit change?

➢Yes/No

New Approach
How much did this code unit 
change?

➢Score in [0,1]
➢0 if the unit is unchanged

➢1 if the unit changed significantly

➢Every value in between!
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How do we do it?

• We use a Abstract Syntax Tree (AST) representation for the two 
versions of a code unit

• We use suitably-designed Tree Kernel Functions to compute a 
diversity score.
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Abstract Syntax Tree Representation
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Method 
Body Block

if
Statement

then
Block

else
Block

Condition

Less than
return

Statement
return

Statement

Unary 
Minus

«x» «0»

«x»

«x»

1 public float abs(float x) {
2 if(x < 0)
3 return -x;
4 else
5 return x;
6 }

• Structured information
• Ignores indentation, 

whitespaces, etc…



Tree Kernel Functions

• New class of functions successfully applied in Natural Language 
Processing.

• Compute similarity between tree structures.

• Highly Customizable
• Easy to customize which tree parts have a greater impact on similarity

• Can be computed efficiently using Dynamic Programming and 
memoization.

• Recently used in Software Engineering for clone detection, but never 
in test case prioritization
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Future Works

• We are working on extending 
our prioritization toolchain with 
this refined approach

• We plan to conduct a more 
extensive evaluation 
• on several open source software 

projects 

• using fault detection-related 
metrics
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