Expressing structural temporal properties of safety critical hierarchical systems

Massimo Benerecetti, Ruggero Lanotte, Fabio Mogavero, Adriano Peron, and

Luigi Libero Lucio Starace

Università degli Studi di Napoli Federico II, Naples, Italy luigiliberolucio.starace@unina.it

September 10, 2021

Safety Critical Systems

- A system is Safety Critical if its failure could lead to unacceptable consequences.
- Typical examples include:
 - medical care devices
 - Aircraft controllers
 - Railway traffic controllers
 - Nuclear plants
 - Many more

Safety Critical Systems

- A way broader class of systems has the potential for unacceptable consequences of failure
- A malfunction in telephone exchange system could have serious consequences as well!
- General trend towards more complex, interconnected, software-intensive safety critical systems
- It is imperative to guarantee high safety standards

Formal Methods

- A way to ensure high safety standards is using formal methods
 - applied mathematics for modelling and analysing ICT systems
- Key steps to apply formal methods include specification of
 - The System to be designed (via modelling languages)
 - The Properties that such system must satisfy

Hierarchical Models

- The notion of hierarchy arises naturally to deal with the increasing complexity of these systems
 - Popular hierarhical modelling languages include Statechart, Simulink
- System is described as a collection of modules in a tree-like hierarchy

Example of a Statechart, from [1]

[1] Pinter, Gergely, and Istvan Majzik. "Impact of statechart implementation techniques on the effectiveness of fault detection mechanisms." *Proceedings.* 30th Euromicro Conference, 2004.. IEEE, 2004.

Motivations

- A lot of work has been done on defining hierarchical modelling languages, and towards integration with modeldriven development frameworks.
- Less work, on the other hand, has been directed towards languages to express relevant behavioural properties of hierarchical models

Goals

In this work, we propose HLTL, a logical formalism designed to express temporal structural properties of hierarchical models

- Firstly we'll introduce Dynamic State Machines (DSTMs), a hierarchical modelling language
- Then, we'll introduce the formalism we propose

A hierarchical modelling language: Dynamic State Machines (DSTMs)

DSTM Syntax

Machines or modules

default

boxIncr2

[Incrementer]

T8

fk

T10

jn

limit

byOne

finished

Entering nodes

Exiting nodes

Simple states

Boxes

Forks and Joins

Main

State: idle1

Main

State: idle1

Hierarchical Computations

Reasoning about computations

• How can we predicate over such hierarchical computations?

Temporal Logics

- How can be predicate over such hierarchical computations?
- Formalisms to express properties of system behaviours (sequences of system states)
- Extensions of standard propositional logics with temporal modalities
- LTL is a widely-used temporal logic, and it is very effective when reasoning about sequences of flat, unstructured states

Dealing with Hierarchical Computations

- In hierarchical computations, states are not flat, they have an intrinsic, tree-like hierarchical structure
- LTL cannot predicate naturally over this intrinsic structure
- We extended LTL with operators that allow to contextualize formulae in the hierarchical structure of states
- We called this extension Hierarchical LTL (HLTL)

25

Hierarchical Linear-time Temporal Logic

An HLTL formula is defined inductively as follows:

$$\phi \coloneqq \mathsf{T} \mid p \in P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2$$

$$\mid X(\phi) \mid \phi_1 U \phi_2$$

$$\mid \leftarrow (\phi) \mid \rightarrow (\phi) \mid \downarrow_n (\phi)$$
HLT

Standard Propositional Logic

LTL operators

HLTL operators

September 10, 2021 Luigi Libero Lucio Starace 28

Conclusions and Future Works

- We have presented and formalized HLTL
- In future works:
 - Devise a model checking procedure
 - Integrate HLTL within the modelling framework for Dynamic State Machines presented in [2]

[2] Benerecetti, M., Gentile, U., Marrone, S., Nardone, R., Peron, A., Starace, L.L.L., Vittorini, V.: From dynamic state machines to Promela. In: Model Checking Software. pp. 56–73. Springer International Publishing, Cham (2019)

Expressing structural temporal properties of safety critical hierarchical systems

Hierarchical Models

- The notion of hierarchy arises naturally to deal with the increasing complexity of these systems
 - Popular hierarhical modelling languages include Statechart, Simulink
- System is described as a collection of modules in a tree-like hierarchy

Example of a Statechart, from [1]

[1] Pinter, Gergely, and Istvan Majzik. "Impact of statechart implementation techniques on the effectiveness of fault detection mechanisms." Proceedings. 30th Euromicro Conference. 2004. IEEE. 2004.

r 10. 2021 Luigi I

Luigi Libero Lucio Starace 34

Hierarchical Linear-time Temporal Logic

• An HLTL formula is defined inductively as follows:

$$\begin{split} \phi &\coloneqq \mathsf{T} \mid \, p \in P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 & \quad \text{Standard} \\ \mid X(\phi) \mid \phi_1 U \phi_2 & \quad \mathsf{LTL \, operators} \\ \mid \leftarrow (\phi) \mid \rightarrow (\phi) \mid \downarrow_n (\phi) & \quad \mathsf{HLTL \, operators} \end{split}$$

September 10, 2021

Luigi Libero Lucio Starace

Luigi Libero Lucio Starace – <u>luigiliberolucio.starace@unina.it</u>

Safety Critical Systems

- A system is Safety Critical if its failure could lead to unacceptable consequences.
- Typical examples include:
 - medical care devices
 - Aircraft controllers
 - Railway traffic controllers
 - Nuclear plants
 - Many more

Hierarchical Models

- The notion of hierarchy arises naturally to deal with the increasing complexity of these systems
 - Popular hierarhical modelling languages include Statechart, Simulink
- System is described as a collection of modules in a tree-like hierarchy

Example of a Statechart, from [1]

[1] Pinter, Gergely, and Istvan Majzik. "Impact of statechart implementation techniques on the effectiveness of fault detection mechanisms." *Proceedings.* 30th Euromicro Conference, 2004.. IEEE, 2004.

Hierarchical Computations

Hierarchical Linear-time Temporal Logic

An HLTL formula is defined inductively as follows:

$$\phi \coloneqq \mathsf{T} \mid p \in P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \qquad \begin{array}{c} \mathsf{Standard} \\ \mathsf{Propositional \, Logic} \\ |X(\phi)| \mid \phi_1 U \phi_2 \\ | \leftarrow (\phi)| \rightarrow (\phi)| \downarrow_n (\phi) \end{array}$$