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Software Evolution

* The lifecycle of a Software Project does not end with its initial release

* Software systems indeed typically evolve over time
* To fix bugs
* To adapt to changing environment and requirements
e To introduce new features
* To improve design and performance
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Software Evolution and Regressions

* During software evolution, changes are made to the codebase

e Software evolution presents many challenges:
* Keep documentation aligned with the code
* Track evolving requirements
* Refactor code to maintain adequate levels of Software Quality
* Ensure no regression fault is introduced with the changes

* Not all changes are equal in terms of fault-proneness
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Not all changes are equal

Version i

public int method(){
int x, y;
y = 3;
X =y - 1;
for(int 1 = 0; 1 < x; i++){
X += 1;
}

return Xx;

Version i+1

15/09/2023

public int method(){
int |value, threshold;
threshold| = 3;

value = threshold|- 1;

for(int i = 0; 1 < |valuej;

value| += 1;

}

return |value|;

i++){
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Not all changes are equal

Version i

public int method(){
int x, y;
y = 3;
=y - 1;
for(int 1 = 0; 1 < x; i++){
X += 1;
}

return Xx;

Version i+1

15/09/2023

public int method(){

int x, y,|1 = 9

y = 3;
=y - 1;

while(++i < x){
X += 1;

}

return Xx;
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Assessing the Fault-proneness of changes

Effectively estimating the fault-proneness of codebase changes can
provide several benefits:

* Allow more effective allocation of limited resources
* Focus testing and inspection efforts towards the most critical changes

e Guide fault localization efforts
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Related Works

* Many works investigated metrics to predict fault-proneness of a
software system [1]
* Detecting the most fault-prone components (classes, methods, modules)
* Often use historical data to train project-specific models

* Fewer works have focused on the fault-proneness of codebase
changes, and evaluated fault-proneness with respect to human
assessments

[1] A. Ouellet, M. Badri, Combining object-oriented metrics and centrality measures to predict faults in object-
oriented software: An empirical validation, Journal of Software: Evolution and Process (2023)
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Goals

* We present a set of Al-based metrics for estimating fault-proneness
of codebase changes, in a project-agnostic way

* We assess their effectiveness by comparing them with fault-proneness
scores defined manually by a Software Engineer
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Proposed Metrics

15/09/2023 IWSM-MENSURA 2023



The Considered Al-based Metrics

Transformer
Models

Tree Kernel
Functions
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Tree Kernel (TK) Functions

* Largely and effectively used in NLP

* ldea: similarity between two trees depends on the number of
fragments (subsets of nodes and edges) they share

* Different definitions of «fragments» lead to different TKs

* We considered 3 TK functions from the literature:
e Subtree Kernels
* Subset-Tree Kernels
e Partial Tree Kernels
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Tree Kernel-based Metrics
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Transformer Models

* A class of deep learning models

* Trained on large corpora of data using unsupervised learning
objectives (masked language modelling or next sentence prediction)

* Such models can be used to learn vector representations capturing
the semantic and syntactic structure of the input

* We leverage a pre-trained CodeBERT model to map code snippets to
vector representations in the latent vector space
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Transformer-based Metric: CodeBERT-distance

Code snippet for
previous version

Code snippet for
current version
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Empirical Evaluation
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Research Questions

* RQ1: To what extent do the considered metrics correlate with fault-
proneness scores defined by a Software Engineer?

* RQ2: How subjective are manually-defined fault-proneness scores?
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Dataset collection

e Started from a recent dataset for regression testing research [2]
* 104 subsequent version pairs from open source Java projects

e More than 1k method-level evolution scenarios

* Two subsequent versions of the same method (m1, m2), where m2 has been
affected by some changes

e Using stratified sampling w.r.t. projects, we sampled 108 method
pairs from 19 different projects

[2] F. Altiero, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, Recover: A curated dataset for regression testing
research, in: Proceedings of the 19th International Conference on Mining Software Repositories, 2022.
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Experimental Procedure

Tree Kernels
Metrics

CodeBERT-
distance

Dataset ) RQ1
Baseline: Correlation

108 method % of changed LOCs Coefficients

Computed Metrics

pairs
® Software Manual Annotations RQ2
S Engineer (on a 1-10 scale) Agreement

. Levels
Manual Annotations

(on a 1-10 scale)

‘ Researcher
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RQ1: Correlation with human-assigned scores

* All the considered metrics are positively correlated with human-
defined fault-proneness scores

e SubTree Kernel and CodeBERT-distance exhibit a strong correlation

* The other metrics perform roughly as good as the baseline

Technique Spearman’s Coeff. Grading

SubTree Kernel Strong
CodeBERT-distance 0,52 Strong
% of changed LOCs (baseline) 0,43 Moderate
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RQ2: Subjectivity of fault-proneness perception

The Software Engineer and the Researcher have a near-perfect
agreement on fault-proneness scores (0,84 Weighted Cohen’s Kappa)

Entity of Disagreement % of Occurrence Cumul. % of Occurrence

O (perfect agreement) 22 22
1 56 79
2 16 94
3 2 96
4 4 97

5 3 100
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Conclusions and Future Works

* Some of the proposed metrics are strongly correlated with time-
consuming fault-proneness assessments performed by an expert

* In future works, we plan to:

* Further improve the metrics, by defining ad-hoc Tree Kernels and fine-tuning
the CodeBERT pre-trained model

* |nvestigate correlation with the presence of actual faults

* Apply the metrics in software engineering tasks such as regression test
optimization or fault localization

* Investigate the factors influencing human fault-proneness perception (i.e.,
seniority, education, type of changes, etc...)
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Al-based Fault-proneness Metrics

for Source Code Changes

Not all changes are equal
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Backup Slides
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Tree Kernels: Fragments Example
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Diff to HTML by rifpessoa

Files changed (1) show

B C://Users/lluigi//Research//code-changes-mensura//dataset//code//3//{old.txt — new.txt} [ Viewed
/%% JEE
* Process a batch of events. The messages are processed in a new * Process a batch of events. The messages are processed in a new

* the event processor creates an interceptor chain containing all * the event processor creates an interceptor chain containing all

* interceptors}. * interceptors}.

* @param eventMessages The batch of messages that is to be proces * @param eventMessages The batch of messages that is to be proces

* [@param unitOfWork The Unit of Work that has been prepared tc * [@param unitOfWork The Unit of Work that has been prepared tc
The segment for which the events should be

* @param segment The segment for which the events should be * @param segment

* {@throws Exception when an exception occurred during processing * (@throws Exception when an exception occurred during processing

*f
protected wvoid processInUnitOfWork(List<? extends EventMessage<?>>
UnitOfWork<? extends EwventMessa

*/
protected woid processInUnitOfWork(List<? extends EventMessage<?>>
UnitOfWork<? extends EventMessa

Segment segment) throws Excepti Segment segment) throws Excepti
COd e Ch a n e 14 | - try { 14 | + ResultMessage<?> resultMessage = unitOflWork.executeWithResult(
iz || = unitOfWork.executeWithResult(() -» { 15 | + MessageMonitor.MonitorCallback monitorCallback =
16 | - MessageMonitor.MonitorCallback monitorCallback = 16 | + messageMonitor.onMessageIngested(unitOfWork. getMes
O 17 | - messageMonitor.onMessageIngested (unitOfiWork. ge 17 | + return new DefaultInterceptorChain<>(unitOfWork, intercept
VI eW 18 | - return new DefaultInterceptorChain<>(unitOfWork, inter 18 | + try {
ik = try { 19 | + eventHandlerInvoker.handle(m, segment);
20 | - eventHandlerInvoker.handle(m, segment)j 20 | + monitorCallback.reportSuccess();
21 | - monitorCallback.reportSuccess(); 21 | + return null;
22 | - return null; 22 | + } catch (Throwable throwable) {
¥ = } catch (Throwable throwable) { 3| + monitorCallback.reportFailure(throwable);
24 | - monitorCallback.reportFailure(throwable); 24 | + throw throwable;
25 | - throw throwable; 25| + }
26 | - } 45| @ })-proceed();
27 | - 1) .proceed(); |+ }, rollbackConfiguration);
28 | - }, rollbackConfiguration); +
29 | - } catch (Exception e) { 9]+ if (resultMessage.isExceptional()) {
30 | + Throwable e = resultMessage.exceptionResult();

if (unitOfWork.isRolledBack()) {
errorHandler.handleError(new ErrorContext(getName(), e

if (unitOfWork.isRolledBack()) {
errorHandler.handleError(new ErrorContext(getName(), e

} else { } else {
logger.info("Exception occurred while processing a mes

e.getClass().getName());

logger.info("Exception occurred while processing a mes
e.getClass().getName());
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