Al-based Fault-proneness Metrics
for Source Code Changes

F. Altiero, A. Corazza, S. Di Martino, A. Peron, and
Luigi Libero Lucio Starace

IWSM MENSURA
September 15, 2023
Rome, Italy

Universita degli Studi di Napoli Federico I, Naples, Italy
Dept. of Electrical Engineering and Information Technology

L ...;.' L] ‘
@ luigiliberolucio.starace@unina.it https://luistar.github.io _'_-..'_: :)
.-.
| L

4

Software Evolution

* The lifecycle of a Software Project does not end with its initial release

* Software systems indeed typically evolve over time
* To fix bugs
* To adapt to changing environment and requirements
e To introduce new features
* To improve design and performance

15/09/2023 IWSM-MENSURA 2023

Software Evolution and Regressions

* During software evolution, changes are made to the codebase

e Software evolution presents many challenges:
* Keep documentation aligned with the code
* Track evolving requirements
* Refactor code to maintain adequate levels of Software Quality
* Ensure no regression fault is introduced with the changes

* Not all changes are equal in terms of fault-proneness

15/09/2023 IWSM-MENSURA 2023

Not all changes are equal

Version i

public int method(){
int x, y;
y = 3;
X =y - 1;
for(int 1 = 0; 1 < x; i++){
X += 1;
}

return Xx;

Version i+1

15/09/2023

public int method(){
int |value, threshold;
threshold| = 3;

value = threshold|- 1;

for(int i = 0; 1 < |valuej;

value| += 1;

}

return |value|;

i++){

IWSM-MENSURA 2023

Not all changes are equal

Version i

public int method(){
int x, y;
y = 3;
=y - 1;
for(int 1 = 0; 1 < x; i++){
X += 1;
}

return Xx;

Version i+1

15/09/2023

public int method(){

int x, y,|1 = 9

y = 3;
=y - 1;

while(++i < x){
X += 1;

}

return Xx;

IWSM-MENSURA 2023

Assessing the Fault-proneness of changes

Effectively estimating the fault-proneness of codebase changes can
provide several benefits:

* Allow more effective allocation of limited resources
* Focus testing and inspection efforts towards the most critical changes

e Guide fault localization efforts

15/09/2023 IWSM-MENSURA 2023

Related Works

* Many works investigated metrics to predict fault-proneness of a
software system [1]
* Detecting the most fault-prone components (classes, methods, modules)
* Often use historical data to train project-specific models

* Fewer works have focused on the fault-proneness of codebase
changes, and evaluated fault-proneness with respect to human
assessments

[1] A. Ouellet, M. Badri, Combining object-oriented metrics and centrality measures to predict faults in object-
oriented software: An empirical validation, Journal of Software: Evolution and Process (2023)

15/09/2023 IWSM-MENSURA 2023

Goals

* We present a set of Al-based metrics for estimating fault-proneness
of codebase changes, in a project-agnostic way

* We assess their effectiveness by comparing them with fault-proneness
scores defined manually by a Software Engineer

15/09/2023 IWSM-MENSURA 2023 8

Proposed Metrics

15/09/2023 IWSM-MENSURA 2023

The Considered Al-based Metrics

Transformer
Models

Tree Kernel
Functions

15/09/2023 IWSM-MENSURA 2023 10

Tree Kernel (TK) Functions

* Largely and effectively used in NLP

* ldea: similarity between two trees depends on the number of
fragments (subsets of nodes and edges) they share

* Different definitions of «fragments» lead to different TKs

* We considered 3 TK functions from the literature:
e Subtree Kernels
* Subset-Tree Kernels
e Partial Tree Kernels

15/09/2023 IWSM-MENSURA 2023

11

Tree Kernel-based Metrics

M

i AST for
Code snippet for _ previous version BRICEELGNE Fault-proneness
previous version AST parsing Function score
(GumTree)
AST for

Code snippet for current version

current version

15/09/2023 IWSM-MENSURA 2023 12

Transformer Models

* A class of deep learning models

* Trained on large corpora of data using unsupervised learning
objectives (masked language modelling or next sentence prediction)

* Such models can be used to learn vector representations capturing
the semantic and syntactic structure of the input

* We leverage a pre-trained CodeBERT model to map code snippets to
vector representations in the latent vector space

15/09/2023 IWSM-MENSURA 2023 13

Transformer-based Metric: CodeBERT-distance

Code snippet for
previous version

Code snippet for
current version

15/09/2023

M

Embedding for

CodeBERT previous version N A FauIt-proneneSS

pretrained D 2 score

model

Embedding for
current version

IWSM-MENSURA 2023 14

Empirical Evaluation

15/09/2023 IWSM-MENSURA 2023

Research Questions

* RQ1: To what extent do the considered metrics correlate with fault-
proneness scores defined by a Software Engineer?

* RQ2: How subjective are manually-defined fault-proneness scores?

15/09/2023 IWSM-MENSURA 2023

16

Dataset collection

e Started from a recent dataset for regression testing research [2]
* 104 subsequent version pairs from open source Java projects

e More than 1k method-level evolution scenarios

* Two subsequent versions of the same method (m1, m2), where m2 has been
affected by some changes

e Using stratified sampling w.r.t. projects, we sampled 108 method
pairs from 19 different projects

[2] F. Altiero, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, Recover: A curated dataset for regression testing
research, in: Proceedings of the 19th International Conference on Mining Software Repositories, 2022.

15/09/2023 IWSM-MENSURA 2023 17

Experimental Procedure

Tree Kernels
Metrics

CodeBERT-
distance

Dataset) RQ1
Baseline: Correlation

108 method % of changed LOCs Coefficients

Computed Metrics

pairs
® Software Manual Annotations RQ2
S Engineer (on a 1-10 scale) Agreement

. Levels
Manual Annotations

(on a 1-10 scale)

‘ Researcher

15/09/2023 IWSM-MENSURA 2023 18

RQ1: Correlation with human-assigned scores

* All the considered metrics are positively correlated with human-
defined fault-proneness scores

e SubTree Kernel and CodeBERT-distance exhibit a strong correlation

* The other metrics perform roughly as good as the baseline

Technique Spearman’s Coeff. Grading

SubTree Kernel Strong
CodeBERT-distance 0,52 Strong
% of changed LOCs (baseline) 0,43 Moderate

15/09/2023 IWSM-MENSURA 2023 19

RQ2: Subjectivity of fault-proneness perception

The Software Engineer and the Researcher have a near-perfect
agreement on fault-proneness scores (0,84 Weighted Cohen’s Kappa)

Entity of Disagreement % of Occurrence Cumul. % of Occurrence

O (perfect agreement) 22 22
1 56 79
2 16 94
3 2 96
4 4 97

5 3 100

15/09/2023 IWSM-MENSURA 2023 20

Conclusions and Future Works

* Some of the proposed metrics are strongly correlated with time-
consuming fault-proneness assessments performed by an expert

* In future works, we plan to:

* Further improve the metrics, by defining ad-hoc Tree Kernels and fine-tuning
the CodeBERT pre-trained model

* |nvestigate correlation with the presence of actual faults

* Apply the metrics in software engineering tasks such as regression test
optimization or fault localization

* Investigate the factors influencing human fault-proneness perception (i.e.,
seniority, education, type of changes, etc...)

15/09/2023 IWSM-MENSURA 2023 21

Al-based Fault-proneness Metrics

for Source Code Changes

Not all changes are equal

Tree Kernel-based Metrics Transformer-based Metric: CodeBERT-distance

Wersion i Wersion i+1
public int method{}{ public int methodi)}{ __\
int w, y; int [value, threshold; AT fr ri“l = Embacding for rl'\
¥ o= thrashald] = 3; prei version Fault-prorenass Code snippet for reviaus wersinn e —
wmy - ij value = theeshald]- 1; SLii0e AOEWOUS wRrsion D'
forfint i = #; i ¢ x; dwe}{ mp | forlint i = #; i < [ralush ies){ —
PR H fwalus +& 1}
H i
FEEUFR X} Faturn [Valoe; = == —
AT fioe o
1 1 ! E'nhrddm_lur
eurren wersion [

Code snippet for
AT TS o

Code snippet for
AT TS o

IWSM MENSURA
RQ2: Subjectivity of fault-proneness perception Septem ber 15’ 2023

Experimental Procedure RQ1: Correlation with human-assigned scores

= All the considered metrics are positively correlated with human- The Saftware Engineer and the Researcher have a near-perfect

defined fault-proneness scores agreement on fault-proneness scores (0,84 Welghted Cohen’s Kappa) R O m e I ta | y

Comgrrind Matrics * SubTree Kernel and CodeBERT-distance exhibit a strong carrelation Entity of Disagreement % of Occurrence Cumul. % of Occurrence]
* The other metrics perform roughly as good as the baseline 0 [perfect agreement) 27 22
1 3b 79
Technigue Spearman'’s Coeff. Grading 2 16 a4

Ll i s SubTree Kernal 0,61 Stronj

| @ 1-10 scale] Agreamant) e 3 2 96
Levels CodeBERT-distance 052 Strong 4 a a7
% of changed LOCs (baseline) 0,43 Maoderate g 3 100

Luigi Libero Lucio Starace
@ luigiliberolucio.starace@unina.it https://luistar.github.io

Backup Slides

15/09/2023

Tree Kernels: Fragments Example

Al
os .

S
- g s b g 5
. . S T N N 3 §
Correlation Analysis S 5 F ot s
5 o < 2 S @ 2 3
c Q et Q
s 5 K K2 X ¥ ¥ 8 s 38
Q 7p] w o o w 7p] O o r]
Changed LOCs (%) . . . 00
0.8
o 0@0® - o
0.6
SSTK Normalized 0.63 C W
04
PTK 0.93| 0.63 . . . O .
- 0.2
PTK Normalized 0.50 0.55 0.83 0.70 . 0000
0
STK | 0.48| 0.59| 0.53| 0.74| 0.72 O . . .
- —-0.2
STK Normalized 0.85 0.41| 0.45
-04
CodeBERT | 0.44| 0.41| 0.54| 0.52| 0.57 | 0.63 . .
-0.6
Practitioner score = 0.43 0.42| 0.43| 0.51| 0.63 0.51 .
-0.8
Researcher score 0 .42 0.43| 0.47| 0.53| 0.67 0.56 0.85

15/09/2023 IWSM-MENSURA 2023 25 -1

Diff to HTML by rifpessoa

Files changed (1) show

B C://Users/lluigi//Research//code-changes-mensura//dataset//code//3//{old.txt — new.txt} [Viewed
/%% JEE
* Process a batch of events. The messages are processed in a new * Process a batch of events. The messages are processed in a new

* the event processor creates an interceptor chain containing all * the event processor creates an interceptor chain containing all

* interceptors}. * interceptors}.

* @param eventMessages The batch of messages that is to be proces * @param eventMessages The batch of messages that is to be proces

* [@param unitOfWork The Unit of Work that has been prepared tc * [@param unitOfWork The Unit of Work that has been prepared tc
The segment for which the events should be

* @param segment The segment for which the events should be * @param segment

* {@throws Exception when an exception occurred during processing * (@throws Exception when an exception occurred during processing

*f
protected wvoid processInUnitOfWork(List<? extends EventMessage<?>>
UnitOfWork<? extends EwventMessa

*/
protected woid processInUnitOfWork(List<? extends EventMessage<?>>
UnitOfWork<? extends EventMessa

Segment segment) throws Excepti Segment segment) throws Excepti
COd e Ch a n e 14 | - try { 14 | + ResultMessage<?> resultMessage = unitOflWork.executeWithResult(
iz || = unitOfWork.executeWithResult(() -» { 15 | + MessageMonitor.MonitorCallback monitorCallback =
16 | - MessageMonitor.MonitorCallback monitorCallback = 16 | + messageMonitor.onMessageIngested(unitOfWork. getMes
O 17 | - messageMonitor.onMessageIngested (unitOfiWork. ge 17 | + return new DefaultInterceptorChain<>(unitOfWork, intercept
VI eW 18 | - return new DefaultInterceptorChain<>(unitOfWork, inter 18 | + try {
ik = try { 19 | + eventHandlerInvoker.handle(m, segment);
20 | - eventHandlerInvoker.handle(m, segment)j 20 | + monitorCallback.reportSuccess();
21 | - monitorCallback.reportSuccess(); 21 | + return null;
22 | - return null; 22 | + } catch (Throwable throwable) {
¥ = } catch (Throwable throwable) { 3| + monitorCallback.reportFailure(throwable);
24 | - monitorCallback.reportFailure(throwable); 24 | + throw throwable;
25 | - throw throwable; 25| + }
26 | - } 45| @ })-proceed();
27 | - 1) .proceed(); |+ }, rollbackConfiguration);
28 | - }, rollbackConfiguration); +
29 | - } catch (Exception e) { 9]+ if (resultMessage.isExceptional()) {
30 | + Throwable e = resultMessage.exceptionResult();

if (unitOfWork.isRolledBack()) {
errorHandler.handleError(new ErrorContext(getName(), e

if (unitOfWork.isRolledBack()) {
errorHandler.handleError(new ErrorContext(getName(), e

} else { } else {
logger.info("Exception occurred while processing a mes

e.getClass().getName());

logger.info("Exception occurred while processing a mes
e.getClass().getName());

IWSM-MENSURA 2023 26

15/09/2023

	Default Section
	Slide 1: AI-based Fault-proneness Metrics for Source Code Changes
	Slide 2: Software Evolution
	Slide 3: Software Evolution and Regressions
	Slide 4: Not all changes are equal
	Slide 5: Not all changes are equal
	Slide 6: Assessing the Fault-proneness of changes
	Slide 7: Related Works
	Slide 8: Goals

	Metrics
	Slide 9: Proposed Metrics
	Slide 10: The Considered AI-based Metrics
	Slide 11: Tree Kernel (TK) Functions
	Slide 12: Tree Kernel-based Metrics
	Slide 13: Transformer Models
	Slide 14: Transformer-based Metric: CodeBERT-distance
	Slide 15: Empirical Evaluation
	Slide 16: Research Questions
	Slide 17: Dataset collection
	Slide 18: Experimental Procedure
	Slide 19: RQ1: Correlation with human-assigned scores
	Slide 20: RQ2: Subjectivity of fault-proneness perception
	Slide 21: Conclusions and Future Works
	Slide 22: AI-based Fault-proneness Metrics for Source Code Changes

	Backup
	Slide 23: Backup Slides
	Slide 24: Tree Kernels: Fragments Example
	Slide 25: Correlation Analysis
	Slide 26: Code Change View

