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Software Evolution

• The lifecycle of a Software Project does not end with its initial release

• Software systems indeed typically evolve over time 
• To fix bugs

• To adapt to changing environment and requirements

• To introduce new features

• To improve design and performance
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Software Evolution and Regressions

• During software evolution, changes are made to the codebase

• Software evolution presents many challenges: 
• Keep documentation aligned with the code

• Track evolving requirements

• Refactor code to maintain adequate levels of Software Quality

• Ensure no regression fault is introduced with the changes

• Not all changes are equal in terms of fault-proneness
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Not all changes are equal

public int method(){
 int value, threshold;
 threshold = 3;
 value = threshold - 1;
 for(int i = 0; i < value; i++){
  value += i;
 }
 return value;

}

public int method(){
 int x, y;
 y = 3;
 x = y - 1;
 for(int i = 0; i < x; i++){
  x += i;
 }
 return x;

}

Version i Version i+1
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Not all changes are equal

public int method(){
 int x, y, i = 0;
 y = 3;
 x = y - 1;
 while(++i < x){
  x += i;
 }
 return x;

}

public int method(){
 int x, y;
 y = 3;
 x = y - 1;
 for(int i = 0; i < x; i++){
  x += i;
 }
 return x;

}

Version i Version i+1
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Assessing the Fault-proneness of changes

Effectively estimating the fault-proneness of codebase changes can 
provide several benefits:

• Allow more effective allocation of limited resources
• Focus testing and inspection efforts towards the most critical changes

• Guide fault localization efforts
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Related Works

• Many works investigated metrics to predict fault-proneness of a 
software system [1]
• Detecting the most fault-prone components (classes, methods, modules)

• Often use historical data to train project-specific models

• Fewer works have focused on the fault-proneness of codebase
changes, and evaluated fault-proneness with respect to human 
assessments

[1] A. Ouellet, M. Badri, Combining object-oriented metrics and centrality measures to predict faults in object-
oriented software: An empirical validation, Journal of Software: Evolution and Process (2023) 
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Goals

• We present a set of AI-based metrics for estimating fault-proneness
of codebase changes, in a project-agnostic way

• We assess their effectiveness by comparing them with fault-proneness
scores defined manually by a Software Engineer
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Proposed Metrics
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The Considered AI-based Metrics

Tree Kernel 
Functions

Transformer 
Models
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Tree Kernel (TK) Functions

• Largely and effectively used in NLP

• Idea: similarity between two trees depends on the number of 
fragments (subsets of nodes and edges) they share

• Different definitions of «fragments» lead to different TKs

• We considered 3 TK functions from the literature:
• Subtree Kernels

• Subset-Tree Kernels

• Partial Tree Kernels
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Tree Kernel-based Metrics

Code snippet for
previous version

Code snippet for 
current version

AST parsing
(GumTree)

Tree Kernel
Function

Fault-proneness
score

AST for 
previous version

AST for 
current version
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Transformer Models

• A class of deep learning models

• Trained on large corpora of data using unsupervised learning 
objectives (masked language modelling or next sentence prediction)

• Such models can be used to learn vector representations capturing
the semantic and syntactic structure of the input

• We leverage a pre-trained CodeBERT model to map code snippets to
vector representations in the latent vector space
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Transformer-based Metric: CodeBERT-distance

Code snippet for
previous version

Code snippet for 
current version

CodeBERT
pretrained

model

Cosine
Distance

Fault-proneness
score

Embedding for 
previous version

Embedding for 
current version
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Empirical Evaluation
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Research Questions

• RQ1: To what extent do the considered metrics correlate with fault-
proneness scores defined by a Software Engineer?

• RQ2: How subjective are manually-defined fault-proneness scores?
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Dataset collection

• Started from a recent dataset for regression testing research [2]

• 104 subsequent version pairs from open source Java projects

• More than 1k method-level evolution scenarios
• Two subsequent versions of the same method (m1, m2), where m2 has been

affected by some changes

• Using stratified sampling w.r.t. projects, we sampled 108 method
pairs from 19 different projects
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Experimental Procedure

Dataset

108 method
pairs

Software 
Engineer

Researcher
Manual Annotations

(on a 1-10 scale)

Manual Annotations
(on a 1-10 scale) Agreement 

Levels

Tree Kernels 
Metrics

CodeBERT-
distance

Computed Metrics

Correlation
Coefficients

Baseline: 
% of changed LOCs

RQ1

RQ2
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RQ1: Correlation with human-assigned scores

Technique Spearman’s Coeff. Grading

SubTree Kernel 0,61 Strong

CodeBERT-distance 0,52 Strong

% of changed LOCs (baseline) 0,43 Moderate

• All the considered metrics are positively correlated with human-
defined fault-proneness scores

• SubTree Kernel and CodeBERT-distance exhibit a strong correlation

• The other metrics perform roughly as good as the baseline
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RQ2: Subjectivity of fault-proneness perception

The Software Engineer and the Researcher have a near-perfect
agreement on fault-proneness scores (0,84 Weighted Cohen’s Kappa)

Entity of Disagreement % of Occurrence Cumul. % of Occurrence

0 (perfect agreement) 22 22

1 56 79

2 16 94

3 2 96

4 4 97

5 3 100
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Conclusions and Future Works

• Some of the proposed metrics are strongly correlated with time-
consuming fault-proneness assessments performed by an expert

• In future works, we plan to:
• Further improve the metrics, by defining ad-hoc Tree Kernels and fine-tuning 

the CodeBERT pre-trained model

• Investigate correlation with the presence of actual faults

• Apply the metrics in software engineering tasks such as regression test 
optimization or fault localization

• Investigate the factors influencing human fault-proneness perception (i.e., 
seniority, education, type of changes, etc…)
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Backup Slides
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Tree Kernels: Fragments Example

E FD

E FD
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Correlation Analysis
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Code Change 
View
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