
F. Altiero, A. Corazza, S. Di Martino, A. Peron, and
Luigi Libero Lucio Starace

AI-based Fault-proneness Metrics
for Source Code Changes

Logo
Affiliatio

n

Università degli Studi di Napoli Federico II, Naples, Italy
Dept. of Electrical Engineering and Information Technology

IWSM MENSURA

September 15, 2023

Rome, Italy

luigiliberolucio.starace@unina.it https://luistar.github.io

Software Evolution

• The lifecycle of a Software Project does not end with its initial release

• Software systems indeed typically evolve over time
• To fix bugs

• To adapt to changing environment and requirements

• To introduce new features

• To improve design and performance

15/09/2023 IWSM-MENSURA 2023 2

Software Evolution and Regressions

• During software evolution, changes are made to the codebase

• Software evolution presents many challenges:
• Keep documentation aligned with the code

• Track evolving requirements

• Refactor code to maintain adequate levels of Software Quality

• Ensure no regression fault is introduced with the changes

• Not all changes are equal in terms of fault-proneness

15/09/2023 IWSM-MENSURA 2023 3

Not all changes are equal

public int method(){
 int value, threshold;
 threshold = 3;
 value = threshold - 1;
 for(int i = 0; i < value; i++){
 value += i;
 }
 return value;

}

public int method(){
 int x, y;
 y = 3;
 x = y - 1;
 for(int i = 0; i < x; i++){
 x += i;
 }
 return x;

}

Version i Version i+1

15/09/2023 IWSM-MENSURA 2023 4

Not all changes are equal

public int method(){
 int x, y, i = 0;
 y = 3;
 x = y - 1;
 while(++i < x){
 x += i;
 }
 return x;

}

public int method(){
 int x, y;
 y = 3;
 x = y - 1;
 for(int i = 0; i < x; i++){
 x += i;
 }
 return x;

}

Version i Version i+1

15/09/2023 IWSM-MENSURA 2023 5

Assessing the Fault-proneness of changes

Effectively estimating the fault-proneness of codebase changes can
provide several benefits:

• Allow more effective allocation of limited resources
• Focus testing and inspection efforts towards the most critical changes

• Guide fault localization efforts

15/09/2023 IWSM-MENSURA 2023 6

Related Works

• Many works investigated metrics to predict fault-proneness of a
software system [1]
• Detecting the most fault-prone components (classes, methods, modules)

• Often use historical data to train project-specific models

• Fewer works have focused on the fault-proneness of codebase
changes, and evaluated fault-proneness with respect to human
assessments

[1] A. Ouellet, M. Badri, Combining object-oriented metrics and centrality measures to predict faults in object-
oriented software: An empirical validation, Journal of Software: Evolution and Process (2023)

15/09/2023 IWSM-MENSURA 2023 7

Goals

• We present a set of AI-based metrics for estimating fault-proneness
of codebase changes, in a project-agnostic way

• We assess their effectiveness by comparing them with fault-proneness
scores defined manually by a Software Engineer

15/09/2023 IWSM-MENSURA 2023 8

Proposed Metrics

15/09/2023 IWSM-MENSURA 2023 9

The Considered AI-based Metrics

Tree Kernel
Functions

Transformer
Models

15/09/2023 IWSM-MENSURA 2023 10

Tree Kernel (TK) Functions

• Largely and effectively used in NLP

• Idea: similarity between two trees depends on the number of
fragments (subsets of nodes and edges) they share

• Different definitions of «fragments» lead to different TKs

• We considered 3 TK functions from the literature:
• Subtree Kernels

• Subset-Tree Kernels

• Partial Tree Kernels

15/09/2023 IWSM-MENSURA 2023 11

Tree Kernel-based Metrics

Code snippet for
previous version

Code snippet for
current version

AST parsing
(GumTree)

Tree Kernel
Function

Fault-proneness
score

AST for
previous version

AST for
current version

15/09/2023 IWSM-MENSURA 2023 12

Transformer Models

• A class of deep learning models

• Trained on large corpora of data using unsupervised learning
objectives (masked language modelling or next sentence prediction)

• Such models can be used to learn vector representations capturing
the semantic and syntactic structure of the input

• We leverage a pre-trained CodeBERT model to map code snippets to
vector representations in the latent vector space

15/09/2023 IWSM-MENSURA 2023 13

Transformer-based Metric: CodeBERT-distance

Code snippet for
previous version

Code snippet for
current version

CodeBERT
pretrained

model

Cosine
Distance

Fault-proneness
score

Embedding for
previous version

Embedding for
current version

15/09/2023 IWSM-MENSURA 2023 14

Empirical Evaluation

15/09/2023 IWSM-MENSURA 2023 15

Research Questions

• RQ1: To what extent do the considered metrics correlate with fault-
proneness scores defined by a Software Engineer?

• RQ2: How subjective are manually-defined fault-proneness scores?

15/09/2023 IWSM-MENSURA 2023 16

Dataset collection

• Started from a recent dataset for regression testing research [2]

• 104 subsequent version pairs from open source Java projects

• More than 1k method-level evolution scenarios
• Two subsequent versions of the same method (m1, m2), where m2 has been

affected by some changes

• Using stratified sampling w.r.t. projects, we sampled 108 method
pairs from 19 different projects

15/09/2023 IWSM-MENSURA 2023 17

[2] F. Altiero, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, Recover: A curated dataset for regression testing
research, in: Proceedings of the 19th International Conference on Mining Software Repositories, 2022.

Experimental Procedure

Dataset

108 method
pairs

Software
Engineer

Researcher
Manual Annotations

(on a 1-10 scale)

Manual Annotations
(on a 1-10 scale) Agreement

Levels

Tree Kernels
Metrics

CodeBERT-
distance

Computed Metrics

Correlation
Coefficients

Baseline:
% of changed LOCs

RQ1

RQ2

15/09/2023 IWSM-MENSURA 2023 18

RQ1: Correlation with human-assigned scores

Technique Spearman’s Coeff. Grading

SubTree Kernel 0,61 Strong

CodeBERT-distance 0,52 Strong

% of changed LOCs (baseline) 0,43 Moderate

• All the considered metrics are positively correlated with human-
defined fault-proneness scores

• SubTree Kernel and CodeBERT-distance exhibit a strong correlation

• The other metrics perform roughly as good as the baseline

15/09/2023 IWSM-MENSURA 2023 19

RQ2: Subjectivity of fault-proneness perception

The Software Engineer and the Researcher have a near-perfect
agreement on fault-proneness scores (0,84 Weighted Cohen’s Kappa)

Entity of Disagreement % of Occurrence Cumul. % of Occurrence

0 (perfect agreement) 22 22

1 56 79

2 16 94

3 2 96

4 4 97

5 3 100
15/09/2023 IWSM-MENSURA 2023 20

Conclusions and Future Works

• Some of the proposed metrics are strongly correlated with time-
consuming fault-proneness assessments performed by an expert

• In future works, we plan to:
• Further improve the metrics, by defining ad-hoc Tree Kernels and fine-tuning

the CodeBERT pre-trained model

• Investigate correlation with the presence of actual faults

• Apply the metrics in software engineering tasks such as regression test
optimization or fault localization

• Investigate the factors influencing human fault-proneness perception (i.e.,
seniority, education, type of changes, etc…)

15/09/2023 IWSM-MENSURA 2023 21

AI-based Fault-proneness Metrics
for Source Code Changes

Logo
Affiliatio

n

IWSM MENSURA

September 15, 2023

Rome, Italy

luigiliberolucio.starace@unina.it

Luigi Libero Lucio Starace
https://luistar.github.io

Backup Slides

15/09/2023 IWSM-MENSURA 2023 23

Tree Kernels: Fragments Example

E FD

E FD
15/09/2023 IWSM-MENSURA 2023 24

Correlation Analysis

15/09/2023 IWSM-MENSURA 2023 25

Code Change
View

15/09/2023 IWSM-MENSURA 2023 26

	Default Section
	Slide 1: AI-based Fault-proneness Metrics for Source Code Changes
	Slide 2: Software Evolution
	Slide 3: Software Evolution and Regressions
	Slide 4: Not all changes are equal
	Slide 5: Not all changes are equal
	Slide 6: Assessing the Fault-proneness of changes
	Slide 7: Related Works
	Slide 8: Goals

	Metrics
	Slide 9: Proposed Metrics
	Slide 10: The Considered AI-based Metrics
	Slide 11: Tree Kernel (TK) Functions
	Slide 12: Tree Kernel-based Metrics
	Slide 13: Transformer Models
	Slide 14: Transformer-based Metric: CodeBERT-distance
	Slide 15: Empirical Evaluation
	Slide 16: Research Questions
	Slide 17: Dataset collection
	Slide 18: Experimental Procedure
	Slide 19: RQ1: Correlation with human-assigned scores
	Slide 20: RQ2: Subjectivity of fault-proneness perception
	Slide 21: Conclusions and Future Works
	Slide 22: AI-based Fault-proneness Metrics for Source Code Changes

	Backup
	Slide 23: Backup Slides
	Slide 24: Tree Kernels: Fragments Example
	Slide 25: Correlation Analysis
	Slide 26: Code Change View

